Neurotoxicology
-
Acrylamide (ACR) intoxication in its monomeric form leads to neuronal damage in both experimental animals and humans. Oxidative stress is one of the principle mechanisms related to the neurotoxicity of ACR exposure. Hence, the present study aimed to recapitulate the potential of ACR to cause oxidative stress and neurotoxic effects in Drosophila melanogaster. ⋯ Furthermore, the spice actives prevented the depletion of reduced GSH levels, maintained the activity of AChE enzyme and dopamine levels in head region. Collectively, these findings clearly demonstrate that ACR induced neurotoxicity in Drosophila may be mediated through oxidative stress mechanisms and the potential of spice actives to abrogate the condition. These data suggest that Drosophila may serve as a suitable model to understand the possible mechanism/s associated with ACR associated neuropathy.
-
Randomized Controlled Trial
Effects of synthetic cathinones contained in "bath salts" on motor behavior and a functional observational battery in mice.
Synthetic stimulants commonly sold as "bath salts" are an emerging abuse problem in the U. S. Users have shown paranoia, delusions, and self-injury. ⋯ The FOB showed that in addition to typical stimulant induced effects, some synthetic cathinones produced ataxia, convulsions, and increased exploration. These results suggest that individual synthetic cathinones differ in their profile of effects, and differ from known stimulants of abuse. Effects of 3-FMC, 4-FMC, and methedrone indicate these synthetic cathinones share major pharmacological properties with the ones that have been banned (mephedrone, MDPV, methylone), suggesting that they may be just as harmful.