Clinical science
-
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. ⋯ COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
-
The emergency of SARS-CoV-2 in China started a novel challenge to the scientific community. As the virus turns pandemic, scientists try to map the cellular mechanisms and pathways of SARS-CoV-2 related to the pathogenesis of Coronavirus Disease 2019 (Covid-19). ⋯ We believe that exaggerated activation of ACE/Angiotensin II (Ang II)/Angiotensin Type 1 (AT1) receptor RAS axis in line with reduction of ACE2/Angiotensin-(1-7)/Mas receptor may exert a pivotal role in the pathogenesis of Covid-19. In this perspective, we discuss potential mechanisms and evidence on this hypothesis.
-
Obesity is a metabolic condition usually accompanied by insulin resistance (IR), type 2 diabetes (T2D), and dyslipidaemia, which is characterised by excessive fat accumulation and related to white adipose tissue (WAT) dysfunction. Enlargement of WAT is associated with a transcriptional alteration of coding and non-coding RNAs (ncRNAs). For many years, big efforts have focused on understanding protein-coding RNAs and their involvement in the regulation of adipocyte physiology and subsequent role in obesity. ⋯ MiRNAs can be released to body fluids and can be transported (free or inside microvesicles) to other organs, where they might trigger metabolic effects in distant tissues, thus opening new possibilities to a potential use of miRNAs as biomarkers for diagnosis, prognosis, and personalisation of obesity treatment. Understanding the role of miRNAs also opens the possibility of using these molecules on individualised dietary strategies for precision weight management. MiRNAs should be envisaged as a future therapeutic approach given that miRNA levels could be modulated by synthetic molecules (f.i. miRNA mimics and inhibitors) and/or specific nutrients or bioactive compounds.
-
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. ⋯ Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
-
In 2015, President Obama launched the Precision Medicine Initiative (PMI), which introduced new funding to a method of research with the potential to study rare and complex diseases. Paediatric heart failure, a heterogeneous syndrome affecting approximately 1 in 100000 children, is one such condition in which precision medicine techniques may be applied with great benefit. Current heart failure therapies target downstream effects of heart failure rather than the underlying cause of heart failure. ⋯ It is, therefore, important to develop therapies that can target the causes of heart failure in children with greater specificity thereby decreasing morbidity, mortality and burden of illness on both patients and their families. The benefits of co-ordinated research in genomics, proteomics, metabolomics, transcriptomics and phenomics along with dietary, lifestyle and social factors have led to novel therapeutic and prognostic applications in other fields such as oncology. Applying such co-ordinated research efforts to heart failure constitutes an important step in advancing care and improving the lives of those affected.