Journal of inorganic biochemistry
-
Four novel thiosemicarbazone metal complexes, [Cu(Am4M)(OAc)]·H2O (1), [Zn(HAm4M)Cl2] (2), [Zn2(Am4M)2Br2] (3) and [Zn2(Am4M)2(OAc)2]·2MeOH (4) [HAm4M=(Z)-2-(amino(pyridin-2-yl)methylene)-N-methylhydrazinecarbothioamide], have been synthesized and characterized by X-ray crystallography, elemental analysis, ESI-MS and IR. X-ray analysis revealed that complexes 1 and 2 are mononuclear, which possess residual coordination sites for Cu(II) ion in 1 and good leaving groups (Cl(-)) for Zn(II) ion in 2. Both 3 and 4 displayed dinuclear units, in which the metal atoms are doubly bridged by S atoms of two Am4M(-) ligands in 3 and by two acetate ions in bi- and mono-dentate forms, respectively, in 4. ⋯ Additionally, it displayed a stronger inhibition on the viability of HepG-2 cells than cisplatin (IC50=25±3.1 μM), suggesting complex 1 might be a potential high efficient antitumor agent. Furthermore, fluorescence microscopic observation and flow cytometric analysis revealed that complex 1 could significantly suppress HepG-2 cell viability and induce apoptosis. Several indexes, such as DNA cleavage, reactive oxygen species (ROS) generation, comet assay and cell cycle analysis indicated that the antitumor mechanism of complex 1 on HepG-2 cells might be via ROS-triggered apoptosis pathway.