Hypertension
-
Pulmonary hypertension (PH) is characterized by profound vascular remodeling and altered Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Magnesium ion (Mg2+), a natural Ca2+ antagonist and a cofactor for numerous enzymes, is crucial for regulating diverse cellular functions, but its roles in PH remains unclear. Here, we examined the roles of Mg2+ and its transporters in PH development. ⋯ Incubation of PASMCs with a high concentration of Mg2+ markedly inhibited PASMC proliferation and migration, and increased apoptosis, whereas a low level of Mg2+ produced the opposite effects. siRNA targeting Slc41a1/2, Cnnm2, and Trpm7 attenuated PASMC proliferation and migration, but promoted apoptosis; and Slc41a3 overexpression also caused similar effects. Moreover, siRNA targeting Slc41a1 or high [Mg2+] incubation inhibited hypoxia-induced upregulation and nuclear translocation of NFATc3 in PASMCs. The results, for the first time, provide the supportive evidence that Mg2+ transporters participate in the development of PH by modulating PASMC proliferation, migration, and apoptosis; and Mg2+ supplementation attenuates PH through regulation of Mg2+ transporters involving the NFATc3 signaling pathway.