Journal of the American Academy of Dermatology
-
J. Am. Acad. Dermatol. · Jan 2000
Comparative StudyComparison of carbon dioxide laser, erbium:YAG laser, dermabrasion, and dermatome: a study of thermal damage, wound contraction, and wound healing in a live pig model: implications for skin resurfacing.
Advances in laser technology allow for precise tissue removal and minimal thermal damage. However, mechanisms for cosmetic improvement have not been determined. Investigators have suggested that ablation, collagen shrinkage, and new collagen deposition all contribute to the clinical outcome. ⋯ Our results show that CO(2) laser resurfacing produces short- and long-term wound contraction that is greater than that induced by purely ablative methods for the same total depth of injury. The erbium laser produced wound contraction profiles similar to those produced by mechanical wounding. The data suggest that initial collagen contraction and thermal damage modulate wound healing.