Antimicrobial agents and chemotherapy
-
Antimicrob. Agents Chemother. · Dec 2004
Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy.
This study was conducted to evaluate risk factors for mortality and treatment outcome of bloodstream infections due to extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae (ESBL-EK). ESBL production in stored K. pneumoniae and E. coli blood isolates from Jan 1998 to Dec 2002 was phenotypically determined according to NCCLS guidelines and/or the double-disk synergy test. A total of 133 patients with ESBL-EK bacteremia, including 66 patients with ESBL-producing K. pneumoniae and 67 with ESBL-producing E. coli, were enrolled. ⋯ Carbapenem and ciprofloxacin were the most effective antibiotics in antimicrobial therapy for ESBL-EK bacteremia. A delay in appropriate definitive antimicrobial therapy was not associated with higher mortality if antimicrobial therapy was adjusted appropriately according to the susceptibility results. Our data suggest that more prudent use of carbapenem as empirical antibiotic may be reasonable.
-
Antimicrob. Agents Chemother. · Dec 2004
n-6 polyunsaturated fatty acids enhance the activities of ceftazidime and amikacin in experimental sepsis caused by multidrug-resistant Pseudomonas aeruginosa.
Recent in vitro and ex vivo studies disclosed an enhancement of the activity of antimicrobials on multidrug-resistant Pseudomonas aeruginosa by n-6 polyunsaturated fatty acids (PUFAS); therefore their effect was evaluated in experimental sepsis in 60 rabbits. Solutions of gamma-linolenic acid (GLA) and arachidonic acid (AA) were administered intravenously with ceftazidime and amikacin in rabbits with sepsis caused by one multidrug-resistant isolate. Therapy was started after bacterial challenge in five groups comprising 12 animals in each group: A, normal saline; B, antimicrobials; C, 99% ethanol and antimicrobials; D, GLA and antimicrobials; and E, AA and antimicrobials. ⋯ The number of viable cells in blood, lung, and mesenteric lymph nodes was significantly reduced in groups D and E compared to that in other groups. Levels of antimicrobials in serum were inadequate to achieve bacterial killing due to the level of resistance. n-6 PUFAs did not influence TNF-alpha. It is concluded that intravenous coadministration of n-6 PUFAs and antimicrobials enhanced antimicrobial bacterial killing in experimental sepsis caused by multidrug-resistant P. aeruginosa.