Antimicrobial agents and chemotherapy
-
Antimicrob. Agents Chemother. · Oct 2008
Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa.
During infection, Pseudomonas aeruginosa employs bacterial communication (quorum sensing [QS]) to coordinate the expression of tissue-damaging factors. QS-controlled gene expression plays a pivotal role in the virulence of P. aeruginosa, and QS-deficient mutants cause less severe infections in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. ⋯ The effects of the three antibiotics administered at subinhibitory concentrations were investigated by use of DNA microarrays. Consistent results from the virulence factor assays, reverse transcription-PCR, and the DNA microarrays support the finding that AZM, CFT, and CPR decrease the expression of a range of QS-regulated virulence factors. The data suggest that the underlying mechanism may be mediated by changes in membrane permeability, thereby influencing the flux of N-3-oxo-dodecanoyl-L-homoserine lactone.
-
This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 microm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. ⋯ The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.
-
Antimicrob. Agents Chemother. · Oct 2008
Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis.
PA-824 is in phase II clinical testing to treat tuberculosis. At a dose of 100 mg/kg of body weight, it has demonstrated bactericidal activity during the initial and continuation phases of treatment in a murine model of tuberculosis. In a prior study, substitution of PA-824 for isoniazid in the first-line regimen of rifampin, isoniazid, and pyrazinamide resulted in significantly lower CFU counts at 2 months and shorter time to culture-negative conversion. ⋯ The combination of rifampin, PA-824 (100 mg/kg), and pyrazinamide rendered all mice culture negative after 2 months of treatment and free of relapse after 4 months of treatment, while some mice receiving rifampin, isoniazid, and pyrazinamide remained culture positive and 15% relapsed after completing 4 months of treatment. The two-drug combination of PA-824 and pyrazinamide displayed synergistic activity that was equivalent to that of the standard first-line regimen. Together, these results support the evaluation of regimens based on the combination of rifampin, PA-824, and pyrazinamide in phase II clinical trials while demonstrating several potential pitfalls in the evaluation of new drug combinations in a murine model of tuberculosis.
-
Antimicrob. Agents Chemother. · Oct 2008
Impact of the interaction of R207910 with rifampin on the treatment of tuberculosis studied in the mouse model.
New drugs are needed to shorten the duration of tuberculosis treatment. R207910, a diarylquinoline, is very active against Mycobacterium tuberculosis both in vitro and in mice. In healthy volunteers, the coadministration of R207910 and rifampin induced the increased metabolism of R207910, resulting in a 50% reduction in the level of R207910 exposure. ⋯ Because of the drug-drug interaction in humans, the activity of R207910 in humans could be less than that expected from studies with mice. Our data from the mouse model demonstrate that R207910 has significant activity, even when its exposure is reduced by 50% and when it is added to a strong background regimen of isoniazid, rifampin, and pyrazinamide. In killing kinetic studies, the bactericidal effect of R207910 in mice was modest during the first week of treatment, but it increased in the following 3 weeks, while the bactericidal activity of isoniazid was limited to the first week of treatment.