Antimicrobial agents and chemotherapy
-
Antimicrob. Agents Chemother. · Aug 2009
Randomized Controlled TrialPharmacokinetics and safety profile of the human anti-Pseudomonas aeruginosa serotype O11 immunoglobulin M monoclonal antibody KBPA-101 in healthy volunteers.
KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. ⋯ KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported.
-
Antimicrob. Agents Chemother. · Aug 2009
Clinical TrialPopulation pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria.
Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. ⋯ The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.
-
Antimicrob. Agents Chemother. · Aug 2009
Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia.
Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with >or=130 microg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and >or=6 microg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. ⋯ A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.