Antimicrobial agents and chemotherapy
-
Antimicrob. Agents Chemother. · Dec 2011
ReviewCurrent prospects for the fluoroquinolones as first-line tuberculosis therapy.
While fluoroquinolones (FQs) have been successful in helping cure multidrug-resistant tuberculosis (MDR TB), studies in mice have suggested that if used as first-line agents they might reduce the duration of therapy required to cure drug-sensitive TB. The results of phase II trials with FQs as first-line agents have been mixed, but in at least three studies where moxifloxacin substituted for ethambutol, there was an increase in the early percentage of sputa that converted to negative for bacilli. ⋯ The principal risk for resistance may be when FQs are used to treat nonspecific respiratory symptoms that are in fact TB, so curtailing this use of FQs could reduce the development of resistance and also the delays in TB diagnosis and treatment that have been documented when an FQ is given in this setting. While the future of FQs as first-line therapy will likely depend upon the results of the ongoing phase III trials, if they are to be effectively employed in high-TB-burden regions their use for community-acquired pneumonias should be restricted, the prevalence of FQ-resistant TB should be monitored, and the cost of the treatment should be comparable to that of current standard drug regimens.
-
Antimicrob. Agents Chemother. · Dec 2011
Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis.
To truly transform the landscape of tuberculosis treatment, novel regimens containing at least 2 new drugs are needed to simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. As part of an ongoing effort to evaluate novel drug combinations for treatment-shortening potential in a murine model, we performed two long-term, relapse-based experiments. In the first experiment, TMC207 plus pyrazinamide, alone or in combination with any third drug, proved superior to the first-line regimen including rifampin, pyrazinamide, and isoniazid. ⋯ In the second experiment evaluating 3-drug combinations composed of TMC207, pyrazinamide, PA-824, moxifloxacin, and rifapentine, TMC207 plus pyrazinamide plus either rifapentine or moxifloxacin was the most effective, curing 100% and 67% of the mice treated, respectively, in 2 months of treatment. Four months of the first-line regimen did not cure any mice, whereas the combination of TMC207, PA-824, and moxifloxacin cured 50% of the mice treated. The results reveal new building blocks for novel regimens with the potential to shorten the duration of treatment for both drug-susceptible and drug-resistant tuberculosis, including the combination of TMC207, pyrazinamide, PA-824, and a potent fluoroquinolone.
-
Antimicrob. Agents Chemother. · Nov 2011
Randomized Controlled TrialPhase III randomized, double-blind study comparing single-dose intravenous peramivir with oral oseltamivir in patients with seasonal influenza virus infection.
Antiviral medications with activity against influenza viruses are important in controlling influenza. We compared intravenous peramivir, a potent neuraminidase inhibitor, with oseltamivir in patients with seasonal influenza virus infection. In a multinational, multicenter, double-blind, double-dummy randomized controlled study, patients aged ≥ 20 years with influenza A or B virus infection were randomly assigned to receive either a single intravenous infusion of peramivir (300 or 600 mg) or oral administration of oseltamivir (75 mg twice a day [b.i.d.] for 5 days). ⋯ Both peramivir groups were noninferior to the oseltamivir group (97.5% CI, <1.170). The overall incidence of adverse drug reactions was significantly lower in the 300-mg-peramivir group, but the incidence of severe reactions in either peramivir group was not different from that in the oseltamivir group. Thus, a single intravenous dose of peramivir may be an alternative to a 5-day oral dose of oseltamivir for patients with seasonal influenza virus infection.
-
Antimicrob. Agents Chemother. · Nov 2011
Randomized Controlled TrialComparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection.
A 10-day course of oral fidaxomicin (200 mg twice a day [b.i.d.]), a potent new macrocyclic drug, was compared to vancomycin (125 mg four times a day [q.i.d.]) in 1,164 adults (1,105 in the modified intent-to-treat [mITT] population) with Clostridium difficile infection in two phase III randomized, double-blind trials at sites in North America and 7 European countries. Of 1,105 mITT patients, 792 (71.7%), including 719/999 (72.0%) in the per-protocol (PP) population, provided a C. difficile strain at baseline, of whom 356 received fidaxomicin with 330 cures (92.7%) and 363 received vancomycin with 329 cures (90.6%). The susceptibilities (MIC(90)) of baseline isolates did not predict clinical cure, failure, or recurrence for fidaxomicin (MIC(90), 0.25 μg/ml for both; range, ≤ 0.007 to 1 μg/ml), but there was a one-dilution difference in the MIC(90) (but not the MIC(50)) for vancomycin (MIC(90), 2 μg/ml [range, 0.25 to 8 μg/ml] for cure and 4.0 μg/ml [range, 0.5 to 4 μg/ml] for failures). ⋯ When analyzed by restriction endonuclease analysis (REA) type, 247/719 (34.4%) isolates were BI group isolates, and the MICs were generally higher for all four drugs tested (MIC(90)s: fidaxomicin, 0.5; vancomycin, 2.0; metronidazole, 2.0; and rifaximin, >256 μg/ml) than for the other REA types. There was no correlation between the MIC of a baseline clinical isolate and clinical outcome. MIC(90)s were generally low for fidaxomicin and vancomycin, but BI isolates had higher MICs than other REA group isolates.