International journal of biological macromolecules
-
Int. J. Biol. Macromol. · Nov 2020
Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach.
SARS-CoV-2 is the deadly virus behind COVID-19, the disease that went on to ravage the world and caused the biggest pandemic 21st century has witnessed so far. On the face of ongoing death and destruction, the urgent need for the discovery of a vaccine against the virus is paramount. This study resorted to the emerging discipline of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-CoV-2. ⋯ Molecular docking simulation between the epitopes and their corresponding MHC molecules was carried out. 13 epitopes, a highly immunogenic adjuvant, elements for proper sub-cellular trafficking, a secretion booster, and appropriate linkers were combined for constructing the vaccine. The vaccine was found to be antigenic, almost neutral at physiological pH, non-toxic, non-allergenic, capable of generating a robust immune response and had a decent worldwide population coverage. Based on these parameters, this design can be considered a promising choice for a vaccine against SARS-CoV-2.
-
Int. J. Biol. Macromol. · Nov 2020
Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing.
Recently, the electrospun nanofiber mats with appropriate properties for applications in the biomedical area has been more considered. In this regard, we successfully fabricated a novel antibacterial nanofiber mat (ethyl cellulose/poly lactic acid/collagen) (EC/PLA/collagen) incorporated with silver sulfadiazine (AgSD) and then analyzed with the required tests. AgSD was loaded in the developed mats with different contents (0.25%, 0.5% and 0.75%) and then electrospun to prepare nanofiber mats. ⋯ The antibacterial properties showed the inhibition activity against Bacillus (9.71 ± 1.15 mm) and E. coli (12.46 ± 1.31 mm) bacteria. Besides, nanofibers have improved cell proliferation and adhesion with any cytotoxic effect on NIH 3T3 fibroblast cells. According these results, it seems that the developed mats would be effective scaffold for application in wound dressings.