International journal of biological macromolecules
-
Int. J. Biol. Macromol. · Nov 2020
Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing.
Recently, the electrospun nanofiber mats with appropriate properties for applications in the biomedical area has been more considered. In this regard, we successfully fabricated a novel antibacterial nanofiber mat (ethyl cellulose/poly lactic acid/collagen) (EC/PLA/collagen) incorporated with silver sulfadiazine (AgSD) and then analyzed with the required tests. AgSD was loaded in the developed mats with different contents (0.25%, 0.5% and 0.75%) and then electrospun to prepare nanofiber mats. ⋯ The antibacterial properties showed the inhibition activity against Bacillus (9.71 ± 1.15 mm) and E. coli (12.46 ± 1.31 mm) bacteria. Besides, nanofibers have improved cell proliferation and adhesion with any cytotoxic effect on NIH 3T3 fibroblast cells. According these results, it seems that the developed mats would be effective scaffold for application in wound dressings.
-
Int. J. Biol. Macromol. · Jan 2020
Rv1273c, an ABC transporter of Mycobacterium tuberculosis promotes mycobacterial intracellular survival within macrophages via modulating the host cell immune response.
Mycobacterium proteins, especially cell wall associated proteins, interact with host macrophage to regulate the functions and cytokine production. So, identification and characterization of such proteins is essential for understanding tuberculosis pathogenesis. The role of the ABC transporter proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. ⋯ The activation of macrophage by Rv1273c was associated with perturbed cytokine production. Pharmacological inhibition experiment and western immunoblotting suggested that this altered cytokine profile was mediated possibly by NF-kB and p38 pathway in macrophage. Overall, the present findings indicated that Rv1273c enhanced mycobacterium persistence and mediated the evasion of immune responses during infection.
-
Int. J. Biol. Macromol. · Aug 2019
Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase.
Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been implicated in food processing and various pathophysiological conditions such as chronic inflammatory diseases. By combination of the colorimetric analysis and fluorophore-assisted carbohydrate electrophoresis (FACE) method, we directly compared the chitinolytic properties of mouse Chit1 and AMCase and determined their combinatory effects in artificial and natural chitin substrates processing. Chit1 and AMCase display different dynamics of chitinolytic properties through acidic to neutral conditions. ⋯ Changes of degradation products using different substrates indicate that AMCase and Chit1 have diverse properties under various pH conditions. Exposure of the chitin substrates to both Chit1 and AMCase did not indicate any mutual interference of these enzymes and showed no synergistic effect, in contrast to observations regarding some bacterial chitinases. Our results suggest that Chit1 and AMCase have no synergistic effect under physiological conditions.
-
Int. J. Biol. Macromol. · May 2019
Circular RNA circPTK2 regulates oxygen-glucose deprivation-activated microglia-induced hippocampal neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling.
Oxygen-glucose deprivation (OGD)-activated microglia contribute to neuronal apoptosis via releasing pro-inflammatory cytokines, and some miRNAs have been reported to be involved in this process. Circular RNAs (circRNAs) have been reported to function as miRNA sponges, but it remains unknown whether and how circRNAs contribute to OGD-activated microglia-induced neuronal apoptosis. Here, we investigated the function and relationship of miR-29b and circPTK2 in OGD-activated microglia-induced neuronal apoptosis. ⋯ These data suggest that miR-29b inhibits OGD-activated microglia-induced neuronal apoptosis via inducing SOCS-1 expression, blocking JNK2/STAT3 signaling, and inhibiting IL-1β production. circPTK2 was confirmed to inhibit miR-29b expression in OGD model by directly binding to miR-29b. Function assay showed that circPTK2 regulated microglia-induced neuronal apoptosis via sponging miR-29b. Collectively, these findings suggest that circPTK2 regulates OGD-activated microglia-induced neuronal apoptosis via miR-29b-SOCS-1-JAK2/STAT3-IL-1β signaling.
-
Int. J. Biol. Macromol. · Aug 2018
A lectin fraction from green seaweed Caulerpa cupressoides inhibits inflammatory nociception in the temporomandibular joint of rats dependent from peripheral mechanisms.
Temporomandibular disorders are the second most common cause of orofacial pain mediated by inflammatory compounds, which in many cases leads to chronic orofacial pain. This study assessed the antinociceptive and anti-inflammatory effects of a lectin from the green seaweed Caulerpa cupressoides (CcL) on hypernociception inflammatory in TMJ of rats and investigated the involvement of different mechanisms. Rats received i.v. ⋯ CcL was able to inhibit the nociceptive response induced by 1.5% Capsaicin, suggesting that CcL has an antinociceptive effect, acting directly on the primary nociceptive neurons. CcL also inhibited the nociceptive response induced by Carrageenan (100 μg/TMJ) or Serotonin (5-HT) (225 μg/TMJ). In conclusion, the results demonstrate that administration of CcL has a potential antinociceptive and anti-inflammatory effect, with a mechanism that is partially dependent on TNF-α, IL-1β, COX-2 and ICAM-1 inhibition and independently from the cannabinoide and opioid system and NO/cGMP/PKG/K+ATP channel pathway.