Journal of biomechanical engineering
-
Head rotational kinematics and tissue deformation metrics obtained from finite element models (FEM) have the potential to be used as traumatic axonal injury (TAI) assessment criteria and headgear evaluation standards. These metrics have been used to predict the likelihood of TAI occurrence; however, their ability in the assessment of the extent of TAI has not been explored. In this study, a pig model of TAI was used to examine a wide range of head loading conditions in two directions. ⋯ These relationships demonstrate that peak angular velocity and acceleration affect the underlying tissue deformations and the knowledge of both help to predict TAI risk. These relationships were combined with the injury thresholds, extracted from the TAI risk curves, and the kinematic-based risk curves representing overall axonal and brain tissue strain and strain rate were determined for predicting TAI. After scaling to humans, these curves can be used for real-time TAI assessment.
-
This is the preface of the special issue.
-
Synthetic mesh for pelvic organ prolapse (POP) repair is associated with high complication rates. While current devices incorporate large pores (>1 mm), recent studies have shown that uniaxial loading of mesh reduces pore size, raising the risk for complications. However, it is difficult to translate uniaxial results to transvaginal meshes, as in vivo loading is multidirectional. ⋯ The computational model identified the same regions, though the model generally underestimated pore deformation. This study demonstrates that multiaxial loading applied clinically has the potential to locally reduce porosity in transvaginal mesh, increasing the risk for complications. Computational simulations show potential of predicting this behavior for more complex loading conditions.
-
Several approaches (anterior, posterior, lateral, and transforaminal) are used in lumbar fusion surgery. However, it is unclear whether one of these approaches has the greatest subsidence risk as published clinical rates of cage subsidence vary widely (7-70%). Specifically, there is limited data on how a patient's endplate morphometry and trabecular bone quality influences cage subsidence risk. ⋯ For all cage groups, trabecular BVF was better correlated with maximum subsidence force compared to endplate thickness and concavity depth. These findings highlight the importance of cage design (e.g. surface area), placement on the endplate, and trabecular bone quality on subsidence. These results may help surgeons during cage selection for lumbar fusion procedures to mitigate adverse events such as cage subsidence.
-
Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. ⋯ Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.