Journal of biomechanical engineering
-
This study aims at investigating three-dimensional subject-specific cerebrospinal fluid (CSF) dynamics in the inferior cranial space, the superior spinal subarachnoid space (SAS), and the fourth cerebral ventricle using a combination of a finite-volume computational fluid dynamics (CFD) approach and magnetic resonance imaging (MRI) experiments. An anatomically accurate 3D model of the entire SAS of a healthy volunteer was reconstructed from high resolution T2 weighted MRI data. Subject-specific pulsatile velocity boundary conditions were imposed at planes in the pontine cistern, cerebellomedullary cistern, and in the spinal subarachnoid space. ⋯ Still, the estimated deformations were small owing to the large parenchymal surface. We have integrated anatomic and velocimetric MRI data with computational fluid dynamics incorporating the porous SAS morphology for the subject-specific reconstruction of cerebrospinal fluid flow in the subarachnoid space. This model can be used as a basis for the development of computational tools, e.g., for the optimization of intrathecal drug delivery and computer-aided evaluation of cerebral pathologies such as syrinx development in syringomelia.
-
Clinically, orthopaedic fracture fixation constructs are mounted using screws inserted into cancellous bone, while biomechanical studies are increasingly using commercially available synthetic bones. The goal of this study was to examine the effect of screw pullout rate on cancellous bone screw purchase strength in synthetic cancellous bone. Sixty synthetic cancellous bone cubes (40x40x40 mm(3)) each had one orthopaedic cancellous bone screw (major diameter=6.5 mm) inserted to a depth of 30 mm. ⋯ Failure energy, failure displacement, and removal energy were relatively unchanged over the pullout range tested, yielding low correlation coefficients (R(2)<0.05). Failure force, failure stress, and resistance force were affected by bone screw pullout rate in synthetic cancellous bone, while failure energy, failure displacement, and removal energy remained unchanged. This is the first study to perform an extensive investigation of cancellous bone screw pullout rate in synthetic cancellous bone.
-
A custom program for the processing of pressure sensitive (Fuji) film data is presented and validated in this paper. Some of the shortcomings of previous descriptions of similar programs in literature are addressed. These shortcomings include incomplete descriptions of scan resolution, processing technique, and accuracy of results. ⋯ The accuracy of this program and that of the two commercially available image processing programs were determined. The results of the custom program are found to be within 10% of the results from the commercial programs and from experimental data. This level of accuracy is the same reported level of accuracy of Fuji film, verifying the custom program for use in Fuji film contact pressure and area measurements.
-
Comparative Study
A simple mass-spring model with roller feet can induce the ground reactions observed in human walking.
It has previously been shown that a bipedal model consisting of a point mass supported by spring limbs can be tuned to simulate periodic human walking. In this study, we incorporated roller feet into the spring-mass model and evaluated the effect of roller radius, impact angle, and limb stiffness on spatiotemporal gait characteristics, ground reactions, and center-of-pressure excursions. We also evaluated the potential of the improved model to predict speed-dependent changes in ground reaction forces and center-of-pressure excursions observed during normal human walking. ⋯ Increases in either limb stiffness or impact angle tended to result in more oscillatory vertical ground reactions. Simultaneous modulation of the limb impact angle and limb stiffness was needed to induce speed-related changes in ground reactions that were consistent with those measured during normal human walking, with better quantitative agreement achieved at slower speeds. We conclude that a simple mass-spring model with roller feet can well describe ground reaction forces, and hence center of mass motion, observed during normal human walking.
-
The objective of this study is to quantify the detailed three-dimensional (3D) pulsatile hemodynamics, mechanical loading, and perfusion characteristics of a patient-specific neonatal aortic arch during cardiopulmonary bypass (CPB). The 3D cardiac magnetic resonance imaging (MRI) reconstruction of a pediatric patient with a normal aortic arch is modified based on clinical literature to represent the neonatal morphology and flow conditions. The anatomical dimensions are verified from several literature sources. ⋯ These drastic hemodynamic differences and associated intense biophysical loading of the pathological CPB configuration necessitate urgent bioengineering improvements--in hardware design, perfusion flow waveform, and configuration. This study serves to document the baseline condition, while the methodology presented can be utilized in preliminary CPB cannula design and in optimization studies reducing animal experiments. Coupled to a lumped-parameter model the 3D hemodynamic characteristics will aid the surgical decision making process of the perfusion strategies in complex congenital heart surgeries.