Journal of biomechanical engineering
-
A viscoelastic model is presented to describe the dynamic response of the human chest to cyclic loading during manual cardiopulmonary resuscitation (CPR). Sternal force and displacement were measured during 16 clinical resuscitation attempts and during compressions on five CPR training manikins. ⋯ The human chests' elastic and damping properties were both augmented with increasing displacement. The manikins' elastic properties were stiffer and both elastic and damping properties were less dependent on displacement than the humans'.
-
An instability resembling an avalanche is proposed as the mechanism by which mucus is expelled from the respiratory tract during cough. The cough event was simulated in a model airway. In these experiments, air was forced through a channel whose walls were lined with a non-Newtonian material rheologically similar to tracheal mucus. ⋯ A continuum model predicts that yielding occurs within the bottom layers of the mucus analog. Calculations based upon estimates of tracheal geometry and air flow show that the clearance event studied here would be expected to occur during a cough but not during normal breathing. Experiments also show that a lubricant introduced between the channel walls and the mucus blanket can reduce the air flow rate required to precipitate the clearance.
-
The majority of twist drills used in orthopaedics are very similar to chisel pointed metal drilling bits. Modifications usually observed are reduction of the point angle to 90 deg and sometimes grinding of the entire cutting lip at 0 deg rake angle, which appeared to have been made arbitrarily without any advantage. We have attempted to design a surgical drill bit with the objective of minimization of the drilling thrust and temperature and effective removal of bone chips. ⋯ Similar improvements were also recorded for drilling bone cement. The time of drilling a bone cortex was also significantly reduced and "walking" on the curved bone surface was eliminated and dimensional tolerance on hole sizes was improved. The new design is likely to reduce the time of surgery and also minimize the tissue damage.