AJNR. American journal of neuroradiology
-
Human and rat cervical spinal cords were imaged with high-resolution spin-echo and inversion-recovery pulse sequences in an experimental 1.9-T MR system. The gross morphology of the cord was easily discernible in fresh and fixed specimens, including the white and gray commissures, dorsal and ventral horns, and lateral and posterior funiculi. ⋯ Interestingly, the central gray matter demonstrates higher signal intensity than the white matter on both short and long TR/TE images. This intensity difference was observed for both human and rat spinal cords, before and after fixation, and can be explained by the relatively small T1 differences between gray matter and white matter and the gray matter-white matter spin-density ratios: 1.127 for fresh and 1.203 for fixed specimens.