Behavioural brain research
-
A growing body of evidence has pointed to the N-methyl-d-aspartate (NMDA) receptor antagonists as a potential therapeutic target for the treatment of major depression. The present study investigated the possibility of synergistic interactions between antidepressant imipramine with the uncompetitive NMDA receptor antagonist ketamine. Wistar rats were acutely treated with ketamine (5 and 10mg/kg) and imipramine (10 and 20mg/kg) and then subjected to forced swimming tests. ⋯ Combined treatment with ketamine and imipramine produced stronger increases of CREB and BDNF protein levels in the prefrontal cortex, hippocampus and amygdala, and PKA phosphorylation in the hippocampus and amygdala and PKC phosphorylation in prefrontal cortex. The results described indicate that co-administration of antidepressant imipramine with ketamine may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whilst limiting side effects.
-
Adrenomedullin (AM) has been demonstrated to be involved in the development of opioid tolerance. The present study further investigated the role of AM in the maintenance of morphine tolerance, morphine-associated hyperalgesia and its cellular mechanisms. Intrathecal (i.t.) injection of morphine for 6 days induced a decline of its analgesic effect and hyperalgesia. ⋯ These results suggest that the activation of AM receptors was involved in the maintenance of morphine tolerance mediating by not only upregulation of the pronociceptive mediators, nNOS and CGRP but also the down-regulation of pain-inhibiting molecule BAM22. Our data support the hypothesis that the level of both pronociceptive mediators and endogenous pain-inhibiting molecules has an impact on the potency of morphine analgesia. Targeting AM receptors is a promising approach to maintain the potency of morphine analgesia during chronic use of this drug.
-
The reuniens nucleus (RE) is the largest nucleus of the midline thalamic nuclei (MLN). RE has strongly connections with the amygdala and hippocampus, the structures that are involved in the learning and memory processes. In our previous report we have shown the role of RE in the spatial learning and memory using Morris water maze (MWM) task. ⋯ Moreover, inactivation of RE only 5 min after training impaired consolidation but not after 90 or 360 min. Also, inactivation of the RE, 5 min before the retrieval test impaired memory retrieval in PA task. In conclusion, it seems that RE is involved in memory processes in rats.
-
The aim of this study was to test the hypothesis that nuclear factor-kappa B (NF-κB) is involved in TRPV4-NO pathway in thermal hyperalgesia following chronic compression of the dorsal root ganglion (DRG) (the procedure hereafter termed CCD) in rat. Intrathecal administration of two NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC; 10(-1) to 10(-2)M) and BAY (100-50 μM), both induced significantly dose-dependent increase in the paw withdrawal latency (PWL) and decrease in nitric oxide (NO) content in DRG when compared with control rats. ⋯ In addition, Western blot analysis indicated that CCD rats exhibited nuclear NF-κB protein expression and low levels of cytoplasmic inhibitory-kappa B (I-κB) expression; the increase in NF-κB expression and decrease in I-κB expression were reversed after intrathecal injection of PDTC. In conclusion, our data suggested that NF-κB could be involved in TRPV4-NO pathway in CCD-induced thermal hyperalgesia.