Behavioural brain research
-
Post-operative cognitive dysfunction (POCD) is a clinical phenomenon that has drawn significant attention from the public and scientific community. Age is a risk factor for POCD. However, the contribution of general anesthesia/anesthetics to POCD and the underlying neuropathology are not clear. ⋯ Thus, isoflurane induces learning and memory impairment in old rats. Lidocaine attenuates these isoflurane effects. Isoflurane may not cause long-lasting neuropathological changes.
-
Environmental enrichment has been shown to have profound effects on the healthy adult brain and as a remedial tool for brains compromised by injury, disease, or negative experience. Based upon these findings and evidence from the prenatal stress literature, we ventured an exploratory study to examine the effects of parental enrichment on offspring development. Using Long Evans rats, paternal enrichment was achieved by housing sires in enriched environments for 28 days prior to mating with a control female. ⋯ Paternal enrichment significantly decreased offspring brain weight at P21. Additionally, both environmental enrichment paradigms significantly decreased global methylation levels in the hippocampus and frontal cortex of male and female offspring. This study demonstrates that positive prenatal experiences; preconceptionally in fathers and prenatally in mothers, have the ability to significantly alter offspring developmental trajectories.
-
Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. ⋯ Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development.
-
There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. ⋯ Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders.
-
The G-protein coupled muscarinic acetylcholine receptors, widely expressed in the CNS, have been implicated in fragile X syndrome (FXS). Recent studies have reported an overactive signaling through the muscarinic receptors in the Fmr1KO mouse model. Hence, it was hypothesized that reducing muscarinic signaling might modulate behavioral phenotypes in the Fmr1KO mice. Pharmacological studies from our lab have provided evidence for this hypothesis, with subtype-preferring muscarinic M1 and M4 receptor antagonists modulating select behaviors in the Fmr1KO mice. Since the pharmacological antagonists were not highly specific, we investigated the specific role of M4 receptors in the Fmr1KO mouse model, using a genetic approach. ⋯ Reducing M4 receptor signaling altered only select behavioral phenotypes in the Fmr1KO mouse model, suggesting that other targets are involved in the modulation of fragile X behaviors.