Behavioural brain research
-
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral features often observed in neuropsychiatric disorders including elevated sensitivity to stimulants and impairments of attention, inhibitory control and memory-related task performance. However, to date there have been relatively few studies designed to assess the effects of PNS on anxiety, stress and fear responses, or the function of the hypothalamic-pituitary-adrenal (HPA) axis (a system clearly linked to stress and fear-related responses as well as neuropsychiatric disorders). In the current study, rats exposed to variable PNS were evaluated for anxiety-related behaviors in open field, elevated plus maze, and light/dark preference tasks. ⋯ Baseline levels of corticosterone in PNS subjects were similar to non-stressed controls; however, when exposed to acute stress, they exhibited an increase in corticosterone that was greater in magnitude. PNS was not associated with increased anxiety-like behaviors or deficits in learning or retention during contextual fear conditioning. Collectivity, these data support the argument that variable PNS in rats is a valid model system for studying some behavioral components of neuropsychiatric disorders as well as the influence of stress hormones.
-
Age-related changes in brain function are complex. Although ageing is associated with a reduction in cerebral blood flow and neuronal activity, task-related processing is often correlated with an enlargement of the corresponding and additionally recruited brain areas. This supplemental employment is considered an attempt to compensate for deficits in the ageing brain. ⋯ Our study revealed dramatic age-related differences in the processing of a simple tactile stimulus in the somatosensory network. Specifically, we detected enhanced activation in the contralateral SI and ipsilateral motor cortex assumingly caused by deficient inhibition and decreased activation in later stages of somatosensory processing (SII, cingulate cortex) in elderly subjects. These results indicate that, in addition to over-activation to compensate for impaired brain functions, there are complex mechanisms of modified inhibition and excitability involved in somatosensory processing in the ageing brain.
-
Social isolation of rodents (SI) elicits a variety of stress responses such as increased aggressiveness, hyper-locomotion, and reduced susceptibility to pentobarbital. To obtain a better understanding of the relevance of SI-induced behavioral abnormalities to psychiatric disorders, we examined the effect of SI on latent learning as an index of spatial attention, and discussed the availability of SI as an epigenetic model of attention deficit hyperactivity disorder (ADHD). Except in specially stated cases, 4-week-old male mice were housed in a group or socially isolated for 3-70 days before experiments. ⋯ Moreover, SI had no effect on cognitive performance elucidated in a modified Y-maze or an object recognition test, but it significantly impaired contextual and conditional fear memory elucidated in the fear-conditioning test. Drugs used for ADHD therapy, methylphenidate (1-10 mg/kg, i.p.) and caffeine (0.5-1 mg/kg, i.p.), improved SI-induced latent learning deficit in a manner reversible with cholinergic but not dopaminergic antagonists. Considering the behavioral features of SI mice together with their susceptibility to ADHD drugs, the present findings suggest that SI provides an epigenetic animal model of ADHD and that central cholinergic systems play a role in the effect of methylphenidate on SI-induced spatial attention deficit.
-
The present study focused on investigating the antidepressant potential of tetrandrine and its possible mechanisms of action. Forced swimming test (FST) and tail suspension test (TST) were used to reveal the antidepressant-like effect of tetrandrine. Potential mechanisms were explored applying reserpine-induced ptosis and hypothermia in mice, as well as using the chronic unpredictable mild stress (CUMS) induced depression model in rats. ⋯ However, these changes could be significantly reversed by tetrandrine application. Furthermore, the levels of the brain-derived neurotrophic factor (BDNF) in hippocampi increased in the tetrandrine-treated rats exposed to CUMS. In summary, our findings suggest that the antidepressant-like effect of tetrandrine is involved in the regulation of the central monoaminergic neurotransmitter system and the levels of BDNF.