Behavioural brain research
-
While increasing evidence demonstrates that physical exercise promotes brain health, little is known on how the reduction of physical activity affects brain function. We investigated whether the cessation of wheel running alters anxiety-like and depression-like behaviors and its impact on adult hippocampal neurogenesis in mice. Male C57BL/6 mice (4 weeks old) were assigned to one of the following groups, and housed until 21 weeks old; (1) no exercise control (noEx), housed in a standard cage; (2) exercise (Ex), housed in a running wheel cage; and (3) exercise-no exercise (Ex-noEx), housed in a running wheel cage for 8 weeks and subsequently in a standard cage. ⋯ Surprisingly, the ratio of differentiation of BrdU-positive cells to doublecortin-positive immature neurons was significantly lower in Ex-noEx compared to the other groups, suggesting that the cessation of wheel running impairs an important component of hippocampal neurogenesis in mice. These results indicate that hippocampal adaptation to physical inactivity is not simply a return to the conditions present in sedentary mice. As the impaired neurogenesis is predicted to increase a vulnerability to stress-induced mood disorders, the reduction of physical activity may contribute to a greater risk of these disorders.