Behavioural brain research
-
Multiple evidence suggest the importance of exercise for cognitive and brain functions. Few studies however, compared the behavioral and neural adaptations to force versus voluntary exercise training. Therefore, spatial learning and memory formation and brain-derived neurotrophic factor (BDNF) were examined in Wister male rats after 6 weeks of either daily forced swimming, voluntary running exercises, or sedentary. ⋯ Likewise, both exercises resulted in increased (p<0.05) hippocampal BDNF level. The results suggest that forced and voluntary exercises can similarly enhance cognitive- and brain-related tasks, seemingly vie the BDNF pathway. These data further confirm the health benefits of exercise and advocate both exercise modalities to enhance behavioral and neural functions.
-
Glutamate NMDA receptors mediate many molecular and behavioral effects of alcohol, and they play a key role in the development of excessive drinking. Uncompetitive NMDA receptor antagonists may, therefore, have therapeutic potential for alcoholism. The first aim was to compare the effects of the NMDA antagonists memantine and ketamine on ethanol and saccharin drinking in alcohol-preferring rats. ⋯ Memantine and ketamine both reduce alcohol drinking in alcohol-preferring rats, but only memantine is selective for alcohol. The effects of ketamine, but not memantine, are mediated by mTOR. The results support the therapeutic potential of uncompetitive NMDA receptor antagonists, especially memantine, in alcohol addiction.
-
A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. ⋯ Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area).