Behavioural brain research
-
Repetitive mild traumatic brain injury (rmTBI; e.g., sports concussions) is common and results in significant cognitive impairment. Targeted therapies for rmTBI are lacking, though evidence from other injury models indicates that targeting N-methyl-d-aspartate (NMDA) receptor (NMDAR)-mediated glutamatergic toxicity might mitigate rmTBI-induced neurologic deficits. However, there is a paucity of preclinical or clinical data regarding NMDAR antagonist efficacy in the rmTBI setting. ⋯ No corresponding protection in behavior outcomes was observed. Here we found NMDAR antagonist therapy may improve histopathological and functional outcomes after rmTBI, though without consistent corresponding improvement in behavioral outcomes. These data raise prospects for therapeutic post-concussive NMDAR antagonism, particularly in athletes and warriors, who suffer functional impairment and neurodegenerative sequelae after multiple concussions.
-
Thalamic dysfunction has been implicated in overall chronic neurological dysfunction after traumatic brain injury (TBI), however little is known about the underlying histopathology. In experimental diffuse TBI (dTBI), we hypothesize that persisting histopathological changes in the ventral posteromedial (VPM) nucleus of the thalamus is indicative of progressive circuit reorganization. Since circuit reorganization in the VPM impacts the whisker sensory system, the histopathology could explain the development of hypersensitivity to whisker stimulation by 28days post-injury; similar to light and sound hypersensitivity in human TBI survivors. ⋯ These data indicate that dTBI results in persisting thalamic histopathology out to a chronic time point. While these changes can be indicative of either adaptive (recovery) or maladaptive (neurological dysfunction) circuit reorganization, they also provide a potential mechanism by which maladaptive circuit reorganization could contribute to the development of chronic neurological dysfunction. Understanding the processes that mediate circuit reorganization is critical to the development of future therapies for TBI patients.
-
The postconcussion syndrome following mild traumatic brain injuries (mTBI) has been regarded as a mostly benign syndrome that typically resolves in the immediate months following injury. However, in some individuals, symptoms become chronic and persistent. This has been a striking feature of the mostly blast-related mTBIs that have been seen in veterans returning from the recent conflicts in Iraq and Afghanistan. ⋯ Fewer animal studies have addressed the chronic effects of lower level blast exposures that are more comparable to those involved in human mTBI or subclinical blast. Here we describe a rat model of repetitive low-level blast exposure that induces a variety of anxiety and PTSD-related behavioral traits including exaggerated fear responses that were present when animals were tested between 28 and 35 weeks after the last blast exposure. These animals provide a model to study the chronic and persistent behavioral effects of blast including the relationship of PTSD to mTBI in dual diagnosis veterans.
-
Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. ⋯ In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior treatment with DHA may be a desirable strategy to improve the therapeutic efficacy of NSC transplantation in TBI.