Behavioural brain research
-
It is well known that elite athletes have higher performance in perception, planning, and execution in sports activities relative to novices. It remains controversial, however, whether any differences in basic cognitive functions between experts and novices exist. Furthermore, few studies have directly used functional magnetic resonance imaging (fMRI) to investigate neural activation and deactivation differences between experts and novices while performing visuospatial working memory (WM) tasks. ⋯ With regard to brain activation, archery experts displayed higher activation in cortical areas associated with visuospatial attention and working memory, including the middle frontal cortex, supplemental motor area, and dorsolateral prefrontal cortex than that of the novices during the performance of the JLO task. With regard to brain deactivation, archery experts exhibited stronger task-related deactivation in cortical areas, such as the paracentral cortex/precuneus and the anterior and posterior cingulate cortex related to the default network, than that of the novices. These results suggest that the archery experts have a strategy that demands greater use of neural correlates associated with visuospatial working memory and attention in addition to greater use of DMN in visuospatial working memory task not directly tied to their domain of expertise.
-
In the present study, we investigated the influence of intra-medial septum (intra-MS) injections of dopamine D1 receptor agents on amnesia induced by intra-CA1 injections of a muscarinic acetylcholine receptor antagonist, scopolamine. This study used a step-through inhibitory (passive) avoidance task to assess memory in adult male Wistar rats. The results showed that in the animals that received post-training intra-MS injections of saline, intra-CA1 administrations of scopolamine (0.75, 1, and 2 μg/rat) decreased inhibitory avoidance (IA) memory consolidation as evidenced by a decrease in step-through latency on the test day, which was suggestive of drug-induced amnesia. ⋯ Intra-MS injections of a dopamine D1 receptor antagonist, SCH23390 (0.5 and 0.75 μg/rat) by itself impaired IA memory consolidation, and also at dose of 0.75 μg/rat increased amnesia induced by intra-CA1 administrations of an ineffective dose of scopolamine (0.5 μg/rat). Post-training intra-MS injections of ineffective doses of SCH23390 (0.1, 0.3 and 0.5 μg/rat) prevented an effective dose of SKF38393 response to the impaired effect of scopolamine. These results suggest that dopamine D1 receptors in the MS via projection neurons to the hippocampus affect impairment of memory consolidation induced by intra-CA injections of scopolamine.
-
Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. ⋯ Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development.
-
Post-operative cognitive dysfunction (POCD) is a clinical phenomenon that has drawn significant attention from the public and scientific community. Age is a risk factor for POCD. However, the contribution of general anesthesia/anesthetics to POCD and the underlying neuropathology are not clear. ⋯ Thus, isoflurane induces learning and memory impairment in old rats. Lidocaine attenuates these isoflurane effects. Isoflurane may not cause long-lasting neuropathological changes.
-
Environmental enrichment has been shown to have profound effects on the healthy adult brain and as a remedial tool for brains compromised by injury, disease, or negative experience. Based upon these findings and evidence from the prenatal stress literature, we ventured an exploratory study to examine the effects of parental enrichment on offspring development. Using Long Evans rats, paternal enrichment was achieved by housing sires in enriched environments for 28 days prior to mating with a control female. ⋯ Paternal enrichment significantly decreased offspring brain weight at P21. Additionally, both environmental enrichment paradigms significantly decreased global methylation levels in the hippocampus and frontal cortex of male and female offspring. This study demonstrates that positive prenatal experiences; preconceptionally in fathers and prenatally in mothers, have the ability to significantly alter offspring developmental trajectories.