Experimental lung research
-
To study the effects of hyperoxia and beta-adrenergic stimulation on pulmonary surfactant in the neonatal lung, we measured disaturated phosphatidylcholine (DSPC) and [14C]choline incorporation into DSPC, obtained from alveolar lavage and lung tissue. We used an isolated salt-perfused rabbit lung preparation from neonatal rabbits exposed to room air or greater than 95% oxygen for 3 days. There were four experimental groups: room air, basal condition; room air, beta-adrenergic stimulation; hyperoxia, basal conditions; and hyperoxia, beta-adrenergic stimulation. ⋯ It appears that prolonged exposure to hyperoxia is manifested primarily by a decrease in [14C]DSPC specific activity suggesting alterations in surfactant synthesis, though DSPC in the lavage is not altered. Beta-adrenergic stimulation may enhance release of newly synthesized surfactant into the alveoli, and possibly enhances uptake for reutilization. The enhancement of surfactant release seems to be preserved after prolonged hyperoxia.