Experimental lung research
-
Acute lung injury (ALI) is often associated with sepsis and is the most common cause of acute respiratory failure. The authors evaluated the role of the heme oxygenase (HO)/carbon monoxide (CO) system on lung injury in a cecal ligation and puncture (CLP)-induced mouse model of ALI. The authors established CLP-induced ALI in C57BL/6 mice. ⋯ Hemin pretreatment also caused a significant decrease in plasma TM along with increased cell surface TM expression in lung tissue, suggesting attenuation of lung injury. Survival data showed that no difference for survival between CLP animals pretreated with hemin or Znpp. Taken together, HO-1 exerts its protective effects on CLP-induced ALI via regulating cell surface TM and APC expression and modulating blood coagulation.
-
Pulmonary inflammation is the key pathological presentation of mechanical ventilation-induced lung injury (VILI), and synthetic RGDS peptide has been suggested to attenuate pulmonary inflammation. The present study aimed to determine whether RGDS peptide has protective effects on VILI. Rats received 4 hours of high tidal volume mechanical ventilation with or without pretreatment with RGDS. ⋯ At the end of 4 hours, rats that received 4 hours of mechanical ventilation exhibited serious pulmonary pathological changes, more polymorphonulear and mononuclear leukocyte recruitment, more tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) production, higher total protein contents in the bronchoalveolar lavage fluids (BALFs) and more lung phosphorylation of integrin β3 and nuclear factor-κB inhibitor (I-κB), and increased NF-κB p65 binding activity than did the control group. Administration of RGDS peptide tended to significantly inhibit all these changes induced by mechanical ventilation. These results suggested that RGDS pretreatment might improve VILI in rats by attenuating inflammatory cascade related to integrin αVβ3 and NF-κB.