Experimental lung research
-
Idiopathic interstitial pneumonias (IIPs) are a group of diffuse parenchymal lung diseases of unknown etiology characterized by the presence of various degrees of inflammation and fibrosis. We aimed to screen the differences among IIPs subtypes in the gene level by using the microarray expression profiles of normal lung tissue and IIPs tissue for the key genes associated with early diagnosis and treatment of IIPs. ⋯ This comprehensive description of altered gene expression in different subtypes of IIPs underscores the complex biological processes characteristic of different subtypes of IIPs and may provide a foundation for future research into this devastating disease.
-
Angiogenesis is a central component of normal wound healing but it has not been fully characterized in lung repair following acute inflammatory injury. The current literature lacks vital information pertaining to the extent, timing, and location of this process. This information is necessary for examining mechanisms that drive normal lung repair in resolving acute inflammatory injury. The goal of our study was to formally characterize lung angiogenesis over a time course of bleomycin-induced lung injury. ⋯ Angiogenesis begins shortly after injury in the bleomycin model and leads to an expansion in the lung endothelial cell population that peaks at day 21. This study offers the first longitudinal examination of angiogenesis following acute inflammatory lung injury induced by bleomycin. Information provided in this study will be vital for further investigating mechanisms of angiogenesis in both normal and abnormal lung repair.