Carcinogenesis
-
Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). ⋯ No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.
-
CD26/dipeptidyl peptidase 4 (DPP4) is a transmembrane protein which is expressed by various malignant cells. We found that the expression of CD26/DPP4 was significantly higher in lung adenocarcinoma samples in our own patient cohort compared to normal lung tissue. We therefore hypothesize that the inhibition of CD26/DPP4 can potentially suppress lung cancer growth. ⋯ Moreover, the effect of vildagliptin-mediated enhanced NK cell cytotoxicity could be reversed by antagonizing the TRAIL receptor. Our data provide evidence that the CD26/DPP4-inhibitor vildagliptin reduces lung cancer growth. We could demonstrate that this effect is exerted by surfactant-activated macrophages and NK cells that act against the tumor via TRAIL-mediated cytotoxicity.