Peptides
-
Urotensin II (UII) and urotensin II-related peptide (URP) are novel vasoactive peptides that share urotensin II receptor (UT). We have recently reported that expressions of URP and UT were up-regulated in kidneys of rats with renal failure or hypertension. To clarify possible changes of the UII system expression in cardiovascular organs with hypertension, we examined the gene expression of UII, URP and UT in hearts and aortae of hypertensive rats. ⋯ In contrast, expression levels of ET-1 were significantly decreased in both the heart and the kidney of 11-12-week-old SHR compared with age-matched WKY. Immunohistochemistry showed that URP and UT were immunostained in cardiomyocytes, with weaker immunostaining in vascular endothelial and smooth muscle cells, in both SHR and WKY. These findings indicate that the gene expression of the UII system components (UII, URP and UT) and ET-1 is differently regulated in hypertension, and that the UII system in the heart and aortae may have certain pathophysiological roles in hypertension.
-
Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. We aimed to determine whether the endogenous apelin/APJ system is an intrinsic protective pathway in ischemic/reperfusion injury. A Langendorff model of perfused isolated rat hearts and primary cultured myocardial cells from neonatal rats were used. ⋯ Meanwhile, apoptosis, the generation of reactive oxygen species and malonaldehyde content as well as lactate dehydrogenase leakage were inhibited by apelin. Furthermore, apelin enhanced superoxide dismutase activity and phosphorylation of extracellular signal-regulated kinase 1/2 and Akt after hypoxia/re-oxygenation. In conclusion, apelin/APJ has protective effects in ischemic heart disease and might constitute an important therapy target.