Peptides
-
Comparative Study
Comparison of the performances of copeptin and multiple biomarkers in long-term prognosis of severe traumatic brain injury.
Enhanced blood levels of copeptin correlate with poor clinical outcomes after acute critical illness. This study aimed to compare the prognostic performances of plasma concentrations of copeptin and other biomarkers like myelin basic protein, glial fibrillary astrocyte protein, S100B, neuron-specific enolase, phosphorylated axonal neurofilament subunit H, Tau and ubiquitin carboxyl-terminal hydrolase L1 in severe traumatic brain injury. We recruited 102 healthy controls and 102 acute patients with severe traumatic brain injury. ⋯ Areas under receiver operating characteristic curves of plasma concentrations of these biomarkers were similar to those of Glasgow Coma Scale score for prognostic prediction. Except plasma copeptin concentration, other biomarkers concentrations in plasma did not statistically significantly improve prognostic predictive value of Glasgow Coma Scale score. Copeptin levels may be a useful tool to predict long-term clinical outcomes after severe traumatic brain injury and have a potential to assist clinicians.
-
PACAP has well-known neuroprotective potential including traumatic brain injury (TBI). Its level is up-regulated following various insults of the CNS in animal models. A few studies have documented alterations of PACAP levels in human serum. ⋯ PACAP concentrations markedly increased in both Pl and CSF in the majority of patients 24-48h after the injury stayed high thereafter. In cases of surviving patients, Pl and CSF levels displayed parallel patterns, which may imply the damage of the blood-brain barrier. However, in patients, who died within the first week, Pl levels were markedly higher than CSF levels, possibly indicating the prognostic value of high Pl PACAP levels.