Peptides
-
The calcitonin receptor-like receptor (CLR) acts as a receptor for the calcitonin gene-related peptide (CGRP) but in order to recognize CGRP, it must form a complex with an accessory protein, receptor activity modifying protein 1 (RAMP1). Identifying the protein/protein and protein/ligand interfaces in this unusual complex would aid drug design. The role of the extreme N-terminus of CLR (Glu23-Ala60) was examined by an alanine scan and the results were interpreted with the help of a molecular model. ⋯ The model suggests that Gln45 and Tyr49 mediate their effects by interacting with RAMP1 whereas Leu41 and Ala44 are likely to be involved in binding CGRP. Ile32, Gly35 and Thr37 form a separate cluster of residues which modulate CGRP binding. The results from this study may be applicable to other family B GPCRs which can associate with RAMPs.
-
The peptides galanin (GAL) and orexin (OX) share common features with the opioid enkephalin (ENK) in their relationship to ingestive behavior, stimulating consumption of a fat-rich diet and ethanol when injected into the hypothalamus. Since receptors for GAL and OX are dense in areas where ENK-expressing neurons are concentrated, these non-opioid peptides may exert their effects, in part, through the stimulation of endogenous ENK. This study was conducted to determine whether injection of GAL or OX affects the expression of ENK in hypothalamic and mesolimbic nuclei involved in consummatory behavior. ⋯ This enhanced ENK expression in the PVN, VTA and CeA was demonstrated with real-time quantitative polymerase chain reaction and confirmed in separate groups using radiolabeled and digoxigenin-labeled in situ hybridization. These findings demonstrate that the non-opioid peptides, GAL or OX, which have similar effects on consummatory behavior, are also similar in their effect on endogenous ENK. In light of published findings showing an opioid antagonist to block GAL- and OX-induced feeding, these results provide additional evidence that ENK is involved in mediating the common behavioral effects of these peptides.
-
The discovery of ghrelin has resulted in the development of approaches to appetite, enabling a better understanding of the mechanisms regulating appetite through molecular analyses. Ghrelin is a 28-amino acid peptide that was isolated from the stomach only a decade ago, and has recently been investigated as a potential therapeutic endogenous agent. This peptide increases appetite, adjusts energy balance, suppresses inflammation, and enhances the release of growth hormone from the pituitary gland. ⋯ As shown in clinical research on humans and basic research using animal models, cachexia often occurs in response to excess release of proinflammatory cytokines and induces further appetite loss, which aggravates the physiological status of underlying diseases. Ghrelin functions as a protector against the vicious cycle of the cachectic paradigm through orexigenic, anabolic and anti-inflammatory effects, so administration of ghrelin may be able to improve quality of life in cachectic patients. We show here a significant role of ghrelin in the pathophysiology of cachectic diseases and the possibility of clinical applications.
-
Urotensin II (UII) and urotensin II-related peptide (URP) are novel vasoactive peptides that share urotensin II receptor (UT). We have recently reported that expressions of URP and UT were up-regulated in kidneys of rats with renal failure or hypertension. To clarify possible changes of the UII system expression in cardiovascular organs with hypertension, we examined the gene expression of UII, URP and UT in hearts and aortae of hypertensive rats. ⋯ In contrast, expression levels of ET-1 were significantly decreased in both the heart and the kidney of 11-12-week-old SHR compared with age-matched WKY. Immunohistochemistry showed that URP and UT were immunostained in cardiomyocytes, with weaker immunostaining in vascular endothelial and smooth muscle cells, in both SHR and WKY. These findings indicate that the gene expression of the UII system components (UII, URP and UT) and ET-1 is differently regulated in hypertension, and that the UII system in the heart and aortae may have certain pathophysiological roles in hypertension.
-
Apelin, the endogenous ligand of the G protein-coupled APJ receptor, is a peptide mediator with emerging regulatory actions in the heart. We aimed to determine whether the endogenous apelin/APJ system is an intrinsic protective pathway in ischemic/reperfusion injury. A Langendorff model of perfused isolated rat hearts and primary cultured myocardial cells from neonatal rats were used. ⋯ Meanwhile, apoptosis, the generation of reactive oxygen species and malonaldehyde content as well as lactate dehydrogenase leakage were inhibited by apelin. Furthermore, apelin enhanced superoxide dismutase activity and phosphorylation of extracellular signal-regulated kinase 1/2 and Akt after hypoxia/re-oxygenation. In conclusion, apelin/APJ has protective effects in ischemic heart disease and might constitute an important therapy target.