Regulatory peptides
-
Regulatory peptides · Jan 2002
Comparative StudyCharacterization of bradykinin receptors in a human osteoblastic cell line.
Bradykinin receptor subtypes linked to prostaglandin release have been assessed in a human osteosarcoma cell line with osteoblastic phenotype (MG-63). Bradykinin (BK; 1 micromol/l) caused a burst of prostaglandin E(2) release that was maximal at 10 min. When the effect on the burst of PGE(2) and PGI(2) release by a variety of kinins and kinin analogues was assessed, the following rank order of response was found: Lys-BK>BK> or =Met-Lys-BK>Ile-Ser-BK>[Tyr(8)]-BK> or =[Hyp(3)]-BK>des-Arg(9)-BK=des-Arg(10)-Lys-BK=des-Arg(1)-BK, [Thi(5,8),D-Phe(7)]-BK=Sar-[D-Phe(8)]-des-Arg(9)-BK=Tyr-Gly-Lys-Aca-Lys-des-Arg(9)-BK. ⋯ MG-63 cells expressed mRNAs for BK B1 and B2 receptors, as assessed by RT-PCR. These data indicate that the human osteoblastic osteosarcoma cell line MG-63 is equipped with functional BK receptors of both B1 and B2 receptor subtypes. The B2 receptors are linked to a burst of prostanoid release, whereas the B1 receptors mediate a delayed prostaglandin response, indicating that the two receptor subtypes are linked to different signal transducing mechanisms or that the molecular mechanisms involved in prostaglandin release are different.