The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study
Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus.
We have examined gating and pharmacological characteristics of somatic K+ channels in fast-spiking interneurons and regularly spiking principal neurons of hippocampal slices. In nucleated patches isolated from basket cells of the dentate gyrus, a fast delayed rectifier K+ current component that was highly sensitive to tetraethylammonium (TEA) and 4-aminopyridine (4-AP) (half-maximal inhibitory concentrations <0.1 mM) predominated, contributing an average of 58% to the total K+ current in these cells. By contrast, in pyramidal neurons of the CA1 region a rapidly inactivating A-type K+ current component that was TEA-resistant prevailed, contributing 61% to the total K+ current. ⋯ In contrast, Kv4 (Kv4.2, Kv4.3) subunit mRNAs were present in 87% of pyramidal neurons but only in 55% of interneurons. Selective block of fast delayed rectifier K+ channels, presumably assembled from Kv3 subunits, by 4-AP reduced substantially the action potential frequency in interneurons. These results indicate that the differential expression of Kv3 and Kv4 subunits shapes the action potential phenotypes of principal neurons and interneurons in the cortex.
-
We have previously shown that injection of the inflammatory irritant and small-fiber excitant mustard oil (MO) into the temporomandibular joint (TMJ) region can reflexively induce a prolonged increase in the activity of both digastric and masseter muscles in rats. It is possible that peripheral excitatory amino acid (EAA) receptors play a role in this effect, because MO-evoked increases in jaw muscle activity are attenuated by preapplication of the noncompetitive NMDA receptor antagonist MK-801 into the TMJ region. In the present study the EAA receptor agonists glutamate, NMDA, kainate, and AMPA were applied locally to the TMJ region. ⋯ Co-application of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (0.5 micromol) significantly reduced the magnitude of the glutamate- and NMDA-evoked ipsilateral jaw muscle responses without affecting responses evoked by AMPA. In contrast, co-application of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (1 nmol) significantly reduced the magnitude of the glutamate- and AMPA-evoked ipsilateral jaw muscle responses without affecting responses evoked by NMDA. This evidence suggests that both NMDA and non-NMDA EAA receptor types are located within the TMJ region and may contribute to jaw muscle activity that can be reflexively evoked from the TMJ region.