The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Focal microinjection of tetrodotoxin (TTX), a potent voltage-gated sodium channel blocker, reduces neurological deficits and tissue loss after spinal cord injury (SCI). Significant sparing of white matter (WM) is seen at 8 weeks after injury and is correlated to a reduction in functional deficits. To determine whether TTX exerts an acute effect on WM pathology, Sprague Dawley rats were subjected to a standardized weight-drop contusion at T8 (10 gm x 2.5 cm). ⋯ In contrast, there was no significant effect of TTX on the loss of WM glia after SCI. Thus, the long-term effects of TTX in reducing WM loss after spinal cord injury appear to be caused by the reduction of acute axonal pathology. These results support the hypothesis that TTX-sensitive sodium channels at axonal nodes of Ranvier play a significant role in the secondary injury of WM after SCI.
-
Clinical Trial
Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study.
In the present study, we used positron emission tomography to investigate changes in regional cerebral blood flow (rCBF) during a general anesthetic infusion set to produce a gradual transition from the awake state to unconsciousness. Five right-handed human volunteers participated in the study. They were given propofol with a computer-controlled infusion pump to achieve three stable levels of plasma concentrations corresponding to mild sedation, deep sedation, and unconsciousness, the latter defined as unresponsiveness to verbal commands. ⋯ Furthermore, a significant covariation between the thalamic and midbrain blood flow changes was observed, suggesting a close functional relationship between the two structures. We suggest that, at the concentrations attained, propofol preferentially decreases rCBF in brain regions previously implicated in the regulation of arousal, performance of associative functions, and autonomic control. Our data support the hypothesis that anesthetics induce behavioral changes via a preferential, concentration-dependent effect on specific neuronal networks rather than through a nonspecific, generalized effect on the brain.
-
This study examined the acute actions of brain-derived neurotrophic factor (BDNF) in the rat dentate gyrus after seizures, because previous studies have shown that BDNF has acute effects on dentate granule cell synaptic transmission, and other studies have demonstrated that BDNF expression increases in granule cells after seizures. Pilocarpine-treated rats were studied because they not only have seizures and increased BDNF expression in granule cells, but they also have reorganization of granule cell "mossy fiber" axons. This reorganization, referred to as "sprouting," involves collaterals that grow into novel areas, i.e., the inner molecular layer, where granule cell and interneuron dendrites are located. ⋯ The results suggest a preferential action of BDNF at mossy fiber synapses, even after substantial changes in the dentate gyrus network. Moreover, the results suggest that activation of trkB receptors could contribute to the hyperexcitability observed in animals with sprouting. Because human granule cells also express increased BDNF mRNA after seizures, and sprouting can occur in temporal lobe epileptics, the results may have implications for understanding temporal lobe epilepsy.
-
Repetitive noxious stimulation leads to permanent adaptive changes of central pathways involved in the genesis and integration of nociception. Several classes of neurotrophic factors that affect brain plasticity are also involved in the regulation of sensory functions in adulthood. To investigate a putative role of nerve growth factor (NGF) in central plasticity linked to chronic pain, modifications in immunoreactivity (IR) for the high-affinity NGF receptor, TrkA, were studied at spinal levels in a rat model of inflammatory chronic pain, adjuvant-induced arthritis (AIA). ⋯ Dual labeling with calcitonin gene-related peptide or substance P showed that TrkA-IR neurons were mainly located in projection fields of small- to medium-sized primary afferent fibers, which convey nociceptive inputs. These results suggest that TrkA-containing neurons of the spinal dorsal horn participate in the first central relay of transmission of nociceptive information to supraspinal centers. Enhanced numbers of TrkA-IR neurons during AIA strongly support the hypothesis of a participation of NGF in adaptive mechanisms of central nociceptive pathways observed in chronic pain states.