The Journal of neuroscience : the official journal of the Society for Neuroscience
-
We investigated the cellular mechanisms underlying the Ca(2+)-dependent release of glutamate from cultured astrocytes isolated from rat hippocampus. Using Ca(2+) imaging and electrophysiological techniques, we analyzed the effects of disrupting astrocytic vesicle proteins on the ability of astrocytes to release glutamate and to cause neuronal electrophysiological responses, i.e., a slow inward current (SIC) and/or an increase in the frequency of miniature synaptic currents. ⋯ Injection of astrocytes with the light chain of the neurotoxin Botulinum B that selectively cleaves the vesicle-associated SNARE protein synaptobrevin inhibited the astrocyte-induced glutamate response in neurons. Therefore, the Ca(2+)-dependent glutamate release from astrocytes is a SNARE protein-dependent process that requires the presence of functional vesicle-associated proteins, suggesting that astrocytes store glutamate in vesicles and that it is released through an exocytotic pathway.