The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Peripheral nerve injury can lead to a persistent neuropathic pain state in which innocuous tactile stimulation elicits pain behavior (tactile allodynia). Spinal administration of the anticonvulsant gabapentin suppresses allodynia by an unknown mechanism. In vitro studies indicate that gabapentin binds to the alpha(2)delta-1 (hereafter referred to as alpha(2)delta) subunit of voltage-gated calcium channels. ⋯ RNase protection experiments indicated that the DRG alpha(2)delta regulation was at the mRNA level. In contrast, calcium channel alpha(1B) and beta(3) subunit expression was not co-upregulated with the alpha(2)delta subunit after nerve injury. These data suggest that DRG alpha(2)delta regulation may play an unique role in neuroplasticity after peripheral nerve injury that may contribute to allodynia development.
-
Diffuse axonal injury (DAI) is one of the most common and important pathologies resulting from the mechanical deformation of the brain during trauma. It has been hypothesized that calcium influx into axons plays a major role in the pathophysiology of DAI. However, there is little direct evidence to support this hypothesis, and mechanisms of potential calcium entry have not been explored. ⋯ Furthermore, blockade of the Na(+)-Ca(2+) exchanger with bepridil modestly reduced the calcium influx after injury. In contrast to previously proposed mechanisms of calcium entry after axonal trauma, we found no evidence of calcium entry through mechanically produced pores (mechanoporation). Rather, our results suggest that traumatic deformation of axons induces abnormal sodium influx through mechanically sensitive Na(+) channels, which subsequently triggers an increase in intra-axonal calcium via the opening of VGCCs and reversal of the Na(+)-Ca(2+) exchanger.
-
The medial geniculate nucleus of the thalamus (MGN) and the basolateral complex of the amygdala (BLA) are critical components of the neural circuit that mediates auditory fear conditioning. Several studies indicate that neurons in both the MGN and BLA exhibit associative plasticity of spike firing during auditory fear conditioning. In the present study, we examined whether the development of plasticity in the MGN requires the BLA. ⋯ Muscimol inactivation of the BLA severely attenuated the development of both conditioning-related increases in CS-elicited spike firing in the MGN and conditional freezing to the auditory CS. Unpaired training did not yield increases in either CS-elicited spike firing or freezing to the tone CS. These results reveal that the BLA is essential to the development of plasticity in the auditory thalamus during fear conditioning.
-
Whereas tissue injury increases spinal dynorphin expression, the functional relevance of this upregulation to persistent pain is unknown. Here, mice lacking the prodynorphin gene were studied for sensitivity to non-noxious and noxious stimuli, before and after induction of experimental neuropathic pain. Prodynorphin knock-out (KO) mice had normal responses to acute non-noxious stimuli and a mild increased sensitivity to some noxious stimuli. ⋯ Opioid (mu, delta, and kappa) receptor density and G-protein activation were not different between WT and KO mice and were unchanged by SNL injury. The observations suggest (1) an early, dynorphin-independent phase of neuropathic pain and a later dynorphin-dependent stage, (2) that upregulated spinal dynorphin is pronociceptive and required for the maintenance of persistent neuropathic pain, and (3) that processes required for the initiation and the maintenance of the neuropathic pain state are distinct. Identification of mechanisms that maintain neuropathic pain appears important for strategies to treat neuropathic pain.
-
Although the physiological significance of continued formation of new neurons in the adult mammalian brain is still uncertain, therapeutic strategies aimed to potentiate this process show great promise. Several external factors, including physical exercise, increase the number of new neurons in the adult hippocampus, but underlying mechanisms are not yet known. We recently found that exercise stimulates uptake of the neurotrophic factor insulin-like growth factor I (IGF-I) from the bloodstream into specific brain areas, including the hippocampus. ⋯ Exercising rats receiving an infusion of nonblocking serum showed normal increases in the number of new hippocampal neurons after exercise. Thus, increased uptake of blood-borne IGF-I is necessary for the stimulatory effects of exercise on the number of new granule cells in the adult hippocampus. Taken together with previous results, we conclude that circulating IGF-I is an important determinant of exercise-induced changes in the adult brain.