The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study Clinical Trial
Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain.
Phantom limb pain (PLP) in amputees is associated with reorganizational changes in the somatosensory system. To investigate the relationship between somatosensory and motor reorganization and phantom limb pain, we used focal transcranial magnetic stimulation (TMS) of the motor cortex and neuroelectric source imaging of the somatosensory cortex (SI) in patients with and without phantom limb pain. For transcranial magnetic stimulation, recordings were made bilaterally from the biceps brachii, zygomaticus, and depressor labii inferioris muscles. ⋯ Neuroelectric source imaging revealed a similar medial displacement of the dipole center for face stimulation in patients with phantom limb pain. There was a high correlation between the magnitude of the shift of the cortical representation of the mouth into the hand area in motor and somatosensory cortex and phantom limb pain. These results show enhanced plasticity in both the motor and somatosensory domains in amputees with phantom limb pain.
-
Although the tachykinins substance P (SP) and neurokinin A (NKA) are coreleased from primary afferent nociceptors and act via neurokinin (NK) receptors, their differential effects in vivo are not known. Despite pharmacological evidence that NKA preferentially binds NK-2 receptors, this receptor is not found in spinal cord neurons. Thus, in the present studies, we compared the extent to which SP and NKA contribute to spinal nociceptive processing via the NK-1 receptor. ⋯ Under inflammatory conditions, all noxious stimulus-induced NK-1 receptor internalization in deep dorsal horn neurons was blocked by GR 205171, suggesting that it is entirely NKA-mediated. Substance P-mediated NK-1 receptor internalization was focused at the site of termination of stimulated nociceptors but NKA also activated NK-1 receptors at more distant sites. We conclude that NKA not only targets the NK-1 receptor but may be a predominant pronociceptive primary afferent neurotransmitter.