The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Tolerance to the analgesic effects of an opioid occurs after its chronic administration, a pharmacological phenomenon that has been associated with the development of abnormal pain sensitivity such as hyperalgesia. In the present study, we examined the role of spinal glutamate transporters (GTs) in the development of both morphine tolerance and associated thermal hyperalgesia. Chronic morphine administered through either intrathecal boluses or continuous infusion induced a dose-dependent downregulation of GTs (EAAC1 and GLAST) in the rat's superficial spinal cord dorsal horn. ⋯ Consistently, the GT inhibitor l-trans-pyrrolidine-2-4-dicarboxylate (PDC) potentiated, whereas the positive GT regulator riluzole reduced, the development of both morphine tolerance and thermal hyperalgesia. The effects from regulating spinal GT activity by PDC were at least in part mediated through activation of the NMDA receptor (NMDAR), because the noncompetitive NMDAR antagonist MK-801 blocked both morphine tolerance and thermal hyperalgesia that were potentiated by PDC. These results indicate that spinal GTs may contribute to the neural mechanisms of morphine tolerance and associated abnormal pain sensitivity by means of regulating regional glutamate homeostasis.
-
Cortical afferents to the basal ganglia, and in particular the corticostriatal projections, are critical in the expression of basal ganglia function in health and disease. The corticostriatal projections are topographically organized but also partially overlap and interdigitate. To determine whether projections from distinct cortical areas converge at the level of single interneurons in the striatum, double anterograde labeling from the primary motor (M1) and primary somatosensory (S1) cortices in the rat, was combined with immunolabeling for parvalbumin (PV), to identify one population of striatal GABAergic interneurons. ⋯ These results demonstrate that, within areas of overlap of functionally distinct projections, there is synaptic convergence at the single cell level. Sensorimotor integration in the basal ganglia is thus likely to be mediated, at least in part, by striatal GABAergic interneurons. Furthermore, our findings suggest that the pattern of innervation of GABAergic interneurons by cortical afferents is different from the cortical innervation of spiny projection neurons.
-
The excitation of nociceptive sensory neurons by ATP released in injured tissue is believed to be mediated partly by P2X3 receptors. Although an analysis of P2X3 knock-out mice has revealed some deficits in nociceptive signaling, detailed analysis of the role of these receptors is hampered by the lack of potent specific pharmacological tools. Here we have used antisense oligonucleotides (ASOs) to downregulate P2X3 receptors to examine their role in models of chronic pain in the rat. ⋯ In models of neuropathic (partial sciatic ligation) and inflammatory (complete Freund's adjuvant) pain, inhibition of the development of mechanical hyperalgesia as well as significant reversal of established hyperalgesia were observed within 2 d of ASO treatment. The time course of the reversal of hyperalgesia is consistent with downregulation of P2X3 receptor protein and function. This study demonstrates the utility of ASO approaches for validating gene targets in in vivo pain models and provides evidence for a role of P2X3 receptors in the pathophysiology of chronic pain.
-
We demonstrated recently that uninjured C-fiber nociceptors in the L4 spinal nerve develop spontaneous activity after transection of the L5 spinal nerve. We postulated that Wallerian degeneration leads to an alteration in the properties of the neighboring, uninjured afferents from adjacent spinal nerves. To explore the role of degeneration of myelinated versus unmyelinated fibers, we investigated the effects of an L5 ventral rhizotomy in rat. ⋯ These results suggest that degeneration in myelinated efferent fibers is sufficient to induce spontaneous activity in C-fiber afferents and behavioral signs of mechanical hyperalgesia. Ectopic spontaneous activity from injured afferents was not required for the development of the neuropathic pain behavior. These results provide additional evidence for a role of Wallerian degeneration in neuropathic pain.
-
The GABA(A) receptor is a target of many general anesthetics, such as propofol. General anesthetic binding sites are distinct from the GABA binding sites. At low concentrations, the anesthetics potentiate the currents induced by submaximal GABA concentrations. ⋯ These subsets are distinct from the subsets of M3 cysteine-substitution mutants that are reactive with pCMBS(-) in the absence and presence of GABA and in the presence of diazepam. We hypothesize that distinct subsets of reactive residues represent distinct conformations or ensembles of conformations of the receptor. These results provide structural evidence for at least five distinct receptor states, three nonconducting states, resting, diazepam-bound and potentiating propofol-bound, and two conducting-desensitized states, the activating propofol-bound and GABA-bound states.