The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Despite the increasing research on placebos in recent times, little is known about the nocebo effect, a phenomenon that is opposite to the placebo effect and whereby expectations of symptom worsening play a crucial role. By studying experimental ischemic arm pain in healthy volunteers and by using a neuropharmacological approach, we found that verbally induced nocebo hyperalgesia was associated to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, as assessed by means of adrenocorticotropic hormone and cortisol plasma concentrations. Both nocebo hyperalgesia and HPA hyperactivity were antagonized by the benzodiazepine diazepam, suggesting that anxiety played a major role in these effects. ⋯ Importantly, both diazepam and proglumide did not show analgesic properties on basal pain, because they acted only on the nocebo-induced pain increase. These data indicate a close relationship between anxiety and nocebo hyperalgesia, in which the CCKergic systems play a key role in anxiety-induced hyperalgesia. These results, together with previous findings showing that placebo analgesia is mediated by endogenous opioids, suggest that the analgesic placebo/hyperalgesic nocebo phenomenon may involve the opposite activation of endogenous opioidergic and CCKergic systems.
-
The p75 neurotrophin receptor (p75NTR) has been implicated in diverse neuronal responses, including survival, cell death, myelination, and inhibition of regeneration. However, the role of p75NTR in neuropathic pain, for which there is currently no effective therapy, has not been explored. ⋯ Functional inhibition of p75NTR suppressed injury-induced neuropathic pain and decreased the phosphorylation of TrkA and p38 mitogen-activated protein kinase, and the induction of transient receptor potential channels in dorsal root ganglion (DRG) neurons. Our results show that p75NTR induced in undamaged DRG neurons facilitates TrkA signaling and contributes to heat and cold hyperalgesia.
-
Comparative Study
Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog.
General anesthetics, including etomidate, act by binding to and enhancing the function of GABA type A receptors (GABA(A)Rs), which mediate inhibitory neurotransmission in the brain. Here, we used a radiolabeled, photoreactive etomidate analog ([(3)H]azietomidate), which retains anesthetic potency in vivo and enhances GABA(A)R function in vitro, to identify directly, for the first time, amino acids that contribute to a GABA(A)R anesthetic binding site. ⋯ The pharmacological specificity of labeling indicates that these methionines contribute to a single binding pocket for etomidate located in the transmembrane domain at the interface between beta and alpha subunits, in what is predicted by structural models based on homology with the nicotinic acetylcholine receptor to be a water-filled pocket approximately 50 A below the GABA binding site. The localization of the etomidate binding site to an intersubunit, not an intrasubunit, binding pocket is a novel conclusion that suggests more generally that the localization of drug binding sites to subunit interfaces may be a feature not only for GABA and benzodiazepines but also for etomidate and other intravenous and volatile anesthetics.
-
Comparative Study
Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain.
Perceived control attenuates pain and pain-directed anxiety, possibly because it changes the emotional appraisal of pain. We examined whether brain areas associated with voluntary reappraisal of emotional experiences also mediate the analgesic effect of perceived control over pain. Using functional magnetic resonance imaging, we compared self-controlled noxious stimuli with physically identical stimuli that were externally controlled. ⋯ For externally controlled pain, activation in right alPFC was inversely correlated with the participants' general belief to have control over their lives. Our results are consistent with a reappraisal view of control and suggest that the analgesic effect of perceived control relies on activation of right alPFC. Failure to activate right alPFC may explain the maladaptive effects of strong general control beliefs during uncontrollable pain.
-
Comparative Study
Abnormal function of C-fibers in patients with diabetic neuropathy.
The mechanisms underlying the development of painful and nonpainful neuropathy associated with diabetes mellitus are unclear. We have obtained microneurographic recordings from unmyelinated fibers in eight patients with diabetes mellitus, five with painful neuropathy, and three with neuropathy without pain. All eight patients had large-fiber neuropathy, and seven patients had pathological thermal thresholds in their feet, indicating the involvement of small-caliber nerve fibers. ⋯ Such fibers were rarely encountered in age-matched controls (3.2%). Afferent fibers with spontaneous activity or mechanical sensitization were found in both patient groups. We conclude that small-fiber neuropathy in diabetes affects receptive properties of nociceptors that leads to an impairment of mechano-responsive nociceptors.