The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Comparative Study
Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat.
Spinal cord injury (SCI) is a cause of major neurological disability, and no satisfactory treatment is currently available. Evidence suggests that polyunsaturated fatty acids (PUFAs) could target some of the pathological mechanisms that underlie damage after SCI. We examined the effects of treatment with PUFAs after lateral spinal cord hemisection in the rat. ⋯ This report shows a striking difference in efficacy between the effects of treatment with omega-3 and omega-6 PUFAs on the outcome of SCI, with omega-3 PUFAs being neuroprotective and omega-6 PUFAs having a damaging effect. Given the proven clinical safety of omega-3 PUFAs, our observations show that these PUFAs have significant therapeutic potential in SCI. In contrast, the use of preparations enriched in omega-6 PUFAs after injury could worsen outcome after SCI.
-
Comparative Study
Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury.
Upregulation of extracellular chondroitin sulfate proteoglycans (CSPGs) after CNS injuries contributes to the impediment of functional recovery by restricting both axonal regeneration and synaptic plasticity. In the present study, the effect of degrading CSPGs with the application of the bacterial enzyme chondroitinase ABC (chABC) into the cuneate nucleus of rats partially denervated of forepaw dorsal column axons was examined. A dorsal column transection between the C6-C7 dorsal root entry zones was followed immediately by an ipsilateral brainstem injection of either chABC or a bacterial-derived control enzyme [penicillinase (P-ase)] and then subsequently (1 week later) followed with a second brainstem enzyme injection and cholera toxin B subunit (CTB) tracer injection into the ipsilateral forepaw digits and pads. ⋯ Examination of the brainstems of rats from each group revealed that CSPGs had been reduced after chABC treatment. Importantly, in the chABC-treated rats (but not in the P-ase controls), a significantly greater area of the cuneate nucleus was occupied by physiologically active CTB traced forepaw afferents that had been spared by the initial cord lesion. These results demonstrate, for the first time, a functional change directly linked to anatomical evidence of sprouting by spinal cord afferents after chABC treatment.
-
Comparative Study
Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study.
We use a novel balanced experimental design to specifically investigate brain mechanisms underlying the modulating effect of expected pain intensity on afferent nociceptive processing and pain perception. We used two visual cues, each conditioned to one of two noxious thermal stimuli [ approximately 48 degrees C (high) or 47 degrees C (low)]. The visual cues were presented just before and during application of the noxious thermal stimulus. ⋯ Comparing functional magnetic resonance imaging blood oxygenation level-dependent activations produced by the high and low thermal stimulus intensities presented with the high-intensity visual cue showed significant activations in nociceptive regions of the thalamus, second somatosensory cortex, and insular cortex. To isolate the effect of expectancy, we compared activations produced by the two visual cues presented with the high-intensity noxious thermal stimulus; this showed significant differences in the ipsilateral caudal anterior cingulate cortex, the head of the caudate, cerebellum, and the contralateral nucleus cuneiformis (nCF). We propose that pain intensity expectancy modulates activations produced by noxious stimuli through a distinct modulatory network that converges with afferent nociceptive input in the nCF.
-
Comparative Study
Activated microglia contribute to the maintenance of chronic pain after spinal cord injury.
Traumatic spinal cord injury (SCI) results not only in motor impairment but also in chronic central pain, which can be refractory to conventional treatment approaches. It has been shown recently that in models of peripheral nerve injury, spinal cord microglia can become activated and contribute to development of pain. Considering their role in pain after peripheral injury, and because microglia are known to become activated after SCI, we tested the hypothesis that activated microglia contribute to chronic pain after SCI. ⋯ Levels of phosphorylated-p38 were decreased in SCI animals receiving minocycline. Cessation of delivery of minocycline resulted in an immediate return of pain-related phenomena. These results suggest an important role for activated microglia in the maintenance of chronic central below-level pain after SCI and support the newly emerging role of non-neuronal immune cells as a contributing factor in post-SCI pain.
-
Comparative Study
Peripheral antinociceptive effects of exogenous and immune cell-derived endomorphins in prolonged inflammatory pain.
Endomorphins (EMs) are endogenous selective mu-opioid receptor agonists. Their role in inflammatory pain has not been fully elucidated. Here we examine peripheral antinociception elicited by exogenously applied EM-1 and EM-2 and the contribution of EM-containing leukocytes to stress- and corticotropin-releasing factor (CRF)-induced antinociception. ⋯ Both forms of antinociception were strongly attenuated by anti-beta-endorphin and to a lesser degree by anti-EM-1 and anti-EM-2 antibodies injected into inflamed paws. Together, exogenously applied and immune cell-derived EMs alleviate prolonged inflammatory pain through selective activation of peripheral opioid receptors. Exogenous EM-2 in addition to mu-receptors also activates peripheral delta-receptors, which does not involve actions via other opioid peptides.