The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. ⋯ The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS.
-
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar is beneficial or detrimental to recovery remains controversial. ⋯ Viral-induced expression of Wnt3a in the normal adult mouse spinal cord induces an injury-like response in glia. Thus canonical Wnt signaling is both necessary and sufficient to induce injury responses among glial cells. These data suggest that targeting Wnt expression after SCI may have therapeutic potential in promoting axon regeneration.
-
Glycoprotein 130 (gp130) is the signal transducing receptor subunit for cytokines of the interleukin-6 (IL-6) family, and it is expressed in a multitude of cell types of the immune and nervous system. IL-6-like cytokines are not only key regulators of innate immunity and inflammation but are also essential factors for the differentiation and development of the somatosensory system. Mice with a null mutation of gp130 in primary nociceptive afferents (SNS-gp130(-/-)) are largely protected from hypersensitivity to mechanical stimuli in mouse models of pathological pain. ⋯ Regulation of Trpa1 mRNA expression levels downstream of gp130 involved the classical Janus kinase family-signal transducer and activator of transcription pathway. Our results closely link proinflammatory cytokines to the expression of TRPA1, both of which have been shown to contribute to hypersensitive pain states. We suggest that gp130 has an essential role in mechanonociception and in the regulation of TRPA1 expression.
-
MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. ⋯ Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.
-
Maladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown. ⋯ Advanced knockdown of ATF4 expression in the BLA by lentivirus-mediated short-hairpin RNA blocked the disruption of the reconsolidation of morphine-induced CPP induced by Sal003 treatment. Furthermore, inhibition of eIF2α dephosphorylation in the BLA immediately after light/tone stimulus retrieval decreased subsequent cue-induced heroin-seeking behavior in the self-administration procedure. These results demonstrate that eIF2α dephosphorylation in the BLA mediates the memory reconsolidation of drug-paired stimuli.