The Journal of neuroscience : the official journal of the Society for Neuroscience
-
The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aβ-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aβ-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aβ-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aβ-LTMRs removes dorsal horn inhibition that otherwise prevents Aβ-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aβ-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. ⋯ The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.
-
The neurobiology of post-traumatic stress disorder (PTSD) remains unclear. Intense stress promotes PTSD, which has been associated with exaggerated startle and deficient sensorimotor gating. Here, we examined the long-term sequelae of a rodent model of traumatic stress (repeated predator exposure) on amygdala systems that modulate startle and prepulse inhibition (PPI), an operational measure of sensorimotor gating. We show in rodents that repeated psychogenic stress (predator) induces long-lasting sensitization of basolateral amygdala (BLA) noradrenergic (NE) receptors (α1) via a corticotropin-releasing factor receptor 1 (CRF-R1)-dependent mechanism, and that these CRF1 and NE α1 receptors are highly colocalized on presumptive excitatory output projection neurons of the BLA. A profile identical to that seen with predator exposure was produced in nonstressed rats by intra-BLA infusions of CRF (200 ng/0.5 μl), but not by repeated NE infusions (20 μg/0.5 μl). Infusions into the adjacent central nucleus of amygdala had no effect. Importantly, the predator stress- or CRF-induced sensitization of BLA manifested as heightened startle and PPI deficits in response to subsequent subthreshold NE system challenges (with intra-BLA infusions of 0.3 μg/0.5 μl NE), up to 1 month after stress. This profile of effects closely resembles aspects of PTSD. Hence, we reveal a discrete neural pathway mediating the enhancement of NE system function seen in PTSD, and we offer a model for characterizing potential new treatments that may work by modulating this BLA circuitry. ⋯ The present findings reveal a novel and discrete neural substrate that could underlie certain core deficits (startle and prepulse inhibition) that are observed in post-traumatic stress disorder (PTSD). It is shown here that repeated exposure to a rodent model of traumatic stress (predator exposure) produces a long-lasting sensitization of basolateral amygdala noradrenergic substrates [via a corticotropin-releasing factor (CRF)-dependent mechanism] that regulate startle, which is exaggerated in PTSD. Moreover, it is demonstrated that the sensitized noradrenergic receptors colocalize with CRF1 receptors on output projection neurons of the basolateral amygdala. Hence, this stress-induced sensitization of noradrenergic receptors on basolateral nucleus efferents has wide-ranging implications for the numerous deleterious sequelae of trauma exposure that are seen in multiple psychiatric illnesses, including PTSD.
-
Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. ⋯ Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
-
Traditionally, electrophysiological correlates of visual working memory (VWM) capacity have been characterized using a lateralized VWM task in which participants had to remember items presented on the cued hemifield while ignoring the distractors presented on the other hemifield. Though this approach revealed a lateralized parieto-occipital negative slow wave (i.e., the contralateral delay activity) and lateralized α power modulation as neural correlates of VWM capacity that may be mechanistically related, recent evidence suggested that these measures might be reflecting individuals' ability to ignore distractors rather than their ability to maintain VWM representations. To better characterize the neural correlates of VWM capacity, we had human participants perform a whole-field VWM task in which they remembered all the items on the display. Here, we found that both the parieto-occipital negative slow wave and the α power suppression showed the characteristics of VWM capacity in the absence of distractors, suggesting that they reflect the maintenance of VWM representations rather than filtering of distractors. Furthermore, the two signals explained unique portions of variance in individual differences of VWM capacity and showed differential temporal characteristics. This pattern of results clearly suggests that individual differences in VWM capacity are determined by dissociable neural mechanisms reflected in the ERP and the oscillatory measures of VWM capacity. ⋯ Our work demonstrates that there exist event-related potential and oscillatory correlates of visual working memory (VWM) capacity even in the absence of task-irrelevant distractors. This clearly shows that the two neural correlates are directly linked to maintenance of task-relevant information rather than filtering of task-irrelevant information. Furthermore, we found that these two correlates show differential temporal characteristics. These results are inconsistent with proposals that the two neural correlates are byproducts of asymmetric α power suppression and indicate that they reflect dissociable neural mechanisms subserving VWM.
-
Resting-state functional connectivity, as measured by functional magnetic resonance imaging (fMRI), is often treated as a trait, used, for example, to draw inferences about individual differences in cognitive function, or differences between healthy or diseased populations. However, functional connectivity can also depend on the individual's mental state. In the present study, we examined the relative contribution of state and trait components in shaping an individual's functional architecture. We used fMRI data from a large, population-based human sample (N = 587, age 18-88 years), as part of the Cambridge Centre for Aging and Neuroscience (Cam-CAN), which were collected in three mental states: resting, performing a sensorimotor task, and watching a movie. Whereas previous studies have shown commonalities across mental states in the average functional connectivity across individuals, we focused on the effects of states on the pattern of individual differences in functional connectivity. We found that state effects were as important as trait effects in shaping individual functional connectivity patterns, each explaining an approximately equal amount of variance. This was true when we looked at aging, as one specific dimension of individual differences, as well as when we looked at generic aspects of individual variation. These results show that individual differences in functional connectivity consist of state-dependent aspects, as well as more stable, trait-like characteristics. Studying individual differences in functional connectivity across a wider range of mental states will therefore provide a more complete picture of the mechanisms underlying factors such as cognitive ability, aging, and disease. ⋯ The brain's functional architecture is remarkably similar across different individuals and across different mental states, which is why many studies use functional connectivity as a trait measure. Despite these trait-like aspects, functional connectivity varies over time and with changes in cognitive state. We measured connectivity in three different states to quantify the size of the trait-like component of functional connectivity, compared with the state-dependent component. Our results show that studying individual differences within one state (such as resting) uncovers only part of the relevant individual differences in brain function, and that the study of functional connectivity under multiple mental states is essential to disentangle connectivity differences that are transient versus those that represent more stable, trait-like characteristics of an individual.