The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Nav1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Nav1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. ⋯ This is key as gain-of-function mutations in human Nav1.7 recapitulate both the distribution and pain percept as shown by CIPN patients. This work also shows that Nav1.7 is increased in human DRG neurons only in dermatomes where patients are experiencing acquired neuropathic pain symptoms. This work therefore has major translational impact, indicating an important novel therapeutic avenue for neuropathic pain as a class.
-
Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. ⋯ Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system.
-
The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [18F]AV-1451 and [11C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults (n = 83; age, 77 ± 6 years; 58% female). ⋯ However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship. Using tau-specific and Aβ-specific positron emission tomography tracers, we show that in vivo MTL tau pathology is associated with episodic-memory performance and MTL atrophy in cognitively normal adults, independent of Aβ. Our data point to MTL tau pathology, particularly in the entorhinal cortex, as a substrate of age-related episodic-memory loss.
-
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. ⋯ In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
-
The MAPK/ERK pathway has a critical role in PNS development. It is required for Schwann cell (SC) differentiation and myelination; sustained embryonic MAPK/ERK activation in SCs enhances myelin growth overcoming signals that normally end myelination. Excess activation of this pathway can be maladaptive as in adulthood acute strong activation of MAPK/ERK has been shown to cause SC dedifferentiation and demyelination. ⋯ What has been unknown is the effect of a mild but sustained MAPK/ERK activation in SCs on nerve repair in adulthood. This promoted myelin clearance but led to abnormalities in nonmyelinating and myelinating SCs in the later phases of nerve repair, resulting in slowed axon regeneration, cutaneous reinnervation, and functional recovery. Our results emphasize the distinct role of the MAPK/ERK pathway in developmental myelination versus remyelination and the importance of signaling between SCs and axons for successful axon regeneration.