Medicinal research reviews
-
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonucleases (Cas) has been utilized for genome editing with great accuracy and high efficiency in generating gene knockout, knockin, and point mutations in eukaryotic genomes. However, traditional CRISPR/Cas9 technology introduces double-stranded DNA breaks (DSBs) at a target locus as the first step to make gene corrections, which easily results in undesired mutations. ⋯ This methodology renders a conversion of one target base into another, for example, C to T (or G to A), and A to G (or T to C) without producing DSBs, requiring a donor DNA template, or generating excessive insertions and deletions. Furthermore, CRISPR/Cas9-derived base editing also improves efficiency in repairing point mutations in the genome.