Neuropeptides
-
This study investigates the effect and some of the mechanisms involved following systemic treatment of mice with Mycobacterium bovis bacillus Calmette-Guérin (BCG) (1 dose per animal containing 6.4 x 10(4) colony-forming units (CFu) 20-60 days beforehand) on modulation of the kinin B1 receptor agonist-induced nociception and oedema formation in the formalin test. Intraplantar (i.p.l.) co-injection of des-Arg9-bradykinin (4-32 nmol/paw) or des-Arg10-kallidin (1-15 nmol/paw), together with sub-maximal concentrations of formalin (0.01 or 0.5%), potentiated (P < 0.01) both pain phases and the paw oedema caused by formalin in animals pre-treated with saline. However, when animals were pre-treated with BCG, the dose-response curves for both B1 agonists were shifted 2 to 8-fold to the left. ⋯ Dexamethasone (0.5 mg/kg, s.c.), given every 24 h, from day 0 to 30-45, inhibited significantly the potentiation of nociceptive response and oedema formation caused by i.p.l. co-injection of formalin plus des-Arg9-bradykinin, while indomethacin (2 mg/kg, i.p.) or phenidone (30 mg/kg, i.p.), given 1 h prior, caused less inhibition. These data show that the long-term systemic treatment of mice with BCG produced dose-related potentiation of B1 receptor agonist-mediated nociception and oedema formation, without affecting similar responses caused by the B2 receptor agonist tyrosine8-bradykinin. Thus, systemic treatment of mice with BCG induces upregulation of B1 receptors, without affecting B2-mediated responses, by a mechanism that seems to be secondary to cytokine release.