Neuropeptides
-
N-Acetylaspartylglutamate (NAAG) is a peptide neurotransmitter present in the brain and spinal cord. It is hydrolysed by glutamate carboxypeptidase II (GCPII); thus, the GCP-II inhibitor 2-[phosphono-methyl]-pentanedioic acid (2-PMPA) protects endogenous NAAG from degradation, allowing its effects to be studied in vivo. We recorded the effect of spinal 2-PMPA (50-1000 microg) on the electrical-evoked activity of dorsal horn neurones in normal and carrageenan-inflamed animals, and in the spinal nerve ligation (SNL) model of neuropathy and sham-operated animals. ⋯ After carrageenan inflammation, the lower dose of 100 microg 2-PMPA inhibited input, post-discharge, C- and Adelta-fibre-evoked responses by a significantly greater amount than the same dose in normal animals. 2-PMPA inhibited neuronal responses less consistently in sham-operated and SNL animals, and effects were not significantly different from those seen in normal animals. NAAG is an agonist at the inhibitory metabotropic glutamate receptor mGluR3, and 2-PMPA may inhibit nociceptive transmission in normal animals by elevating synaptic NAAG levels, allowing it to activate mGluR3 and thus reducing transmitter release from afferent nerve terminals. mGluR3 expression in the superficial dorsal horn is upregulated after peripheral inflammation, perhaps explaining the greater inhibition of neuronal responses we observed after carrageenan inflammation. These results support an important role of endogenous NAAG in the spinal processing of noxious information.