Neuropeptides
-
The action of galanin in the central nervous system is mediated by at least three galanin receptor subtypes (GalR1, GalR2 and GalR3) which belong to the family of G protein-coupled receptors. GalR1 and GalR2 are coupled to G(i/o) proteins, although the latter may also be coupled to G(q/11) proteins. The aim of the present study was to identify the anatomical distribution and quantify the density of GalRs coupled to G proteins. ⋯ The results show an anatomical distribution similar to that described for GalR1. However, in diverse brain areas, in which a high density of these receptors has previously been reported, only a moderate coupling to G proteins was found. These findings would suggest that the efficacy of galanin to induce an effective coupling of its receptors to G proteins could be different depending on the brain area.
-
The neuropeptide galanin is expressed in the mammalian central nervous system and has been implicated in neurotrophic actions. Central galanin administration induces cognitive deficits in rodents and inhibits the release of acetylcholine in the hippocampus. In addition, a galanin hyperinnervation of the basal forebrain cholinergic cells in Alzheimer's disease patients has been reported. ⋯ This effect was reverted by galanin treatment and indicates that the surgery increased receptor functional coupling to G proteins, which is restored by a possible neurotrophic action mediated by galanin. In addition, in galanin administered animals, galanin-stimulated binding was increased in the amygdala but decreased in the diagonal band, whilst binding stimulation mediated by carbachol was found to be increased in the amygdala, thalamic nuclei and diagonal band. These findings indicate that galanin treatment modulates the coupling of galanin and muscarinic cholinergic receptors to G proteins in specific regions of the rat central nervous system.
-
N-Acetylaspartylglutamate (NAAG) is a peptide neurotransmitter present in the brain and spinal cord. It is hydrolysed by glutamate carboxypeptidase II (GCPII); thus, the GCP-II inhibitor 2-[phosphono-methyl]-pentanedioic acid (2-PMPA) protects endogenous NAAG from degradation, allowing its effects to be studied in vivo. We recorded the effect of spinal 2-PMPA (50-1000 microg) on the electrical-evoked activity of dorsal horn neurones in normal and carrageenan-inflamed animals, and in the spinal nerve ligation (SNL) model of neuropathy and sham-operated animals. ⋯ After carrageenan inflammation, the lower dose of 100 microg 2-PMPA inhibited input, post-discharge, C- and Adelta-fibre-evoked responses by a significantly greater amount than the same dose in normal animals. 2-PMPA inhibited neuronal responses less consistently in sham-operated and SNL animals, and effects were not significantly different from those seen in normal animals. NAAG is an agonist at the inhibitory metabotropic glutamate receptor mGluR3, and 2-PMPA may inhibit nociceptive transmission in normal animals by elevating synaptic NAAG levels, allowing it to activate mGluR3 and thus reducing transmitter release from afferent nerve terminals. mGluR3 expression in the superficial dorsal horn is upregulated after peripheral inflammation, perhaps explaining the greater inhibition of neuronal responses we observed after carrageenan inflammation. These results support an important role of endogenous NAAG in the spinal processing of noxious information.
-
Although chronic inflammatory pain is known to be associated with hypersensitivity to mu opioid receptor agonists, no evidence for changes in the expression and/or characteristics of central mu opioid receptors has yet been reported in relevant models of this type of pain. In the present study, both immunohistochemical and autoradiographic approaches were used to address this question in polyarthritic rats, on the 4th week after intradermal injection of complete Freund's adjuvant, when inflammatory pain was at its maximum. ⋯ These data indicate that chronic inflammatory pain caused by polyarthritis was associated with an increased expression of mu-opioid receptors in dorsal root ganglion sensory neurones that did not result in an increased spinal density of these receptors, in spite of their well established axonal transport in the central portion of primary afferent fibres to the dorsal horn. In contrast, axonal transport of mu-opioid receptors in the peripheral portion of these fibres probably accounts for the increased receptor density in inflamed tissues already reported in the literature.