European journal of radiology
-
Appropriate use of information and communication technology (ICT) and mechatronic (MT) systems is viewed by many experts as a means to improve workflow and quality of care in the operating room (OR). This will require a suitable information technology (IT) infrastructure, as well as communication and interface standards, such as specialized extensions of DICOM, to allow data interchange between surgical system components in the OR. A design of such an infrastructure, sometimes referred to as surgical PACS, but better defined as a Therapy Imaging and Model Management System (TIMMS), will be introduced in this article. ⋯ To determine these standards, it is important to define step-by-step surgical workflow practices and create interventional workflow models per procedures or per variable cases. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG-24 is to serve the therapeutic disciplines by enabling modelling technology to be based on standards.
-
In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. ⋯ Emerging disruptive technologies and innovative paradigm such as Open Source software are leading the way to a new generation of information systems that slowly will change the way physicians and healthcare providers as well as patients will interact and communicate in the future. The impact of these new technologies is particularly effective in image communication, PACS and teleradiology.
-
To assess the possible extent of dose reduction for low-dose computed tomography (CT) in the detection of body-packing (ingested drug packets) as an alternative to plain radiographs in an animal model. ⋯ Extensive dose reduction makes low-dose CT a valuable alternative imaging modality for the examination of suspected body-packers and might replace conventional abdominal radiographs as the first-line imaging modality.