Kidney international
-
Kidney international · Oct 2000
Mechanism of chronic obstructive uropathy: increased expression of apoptosis-promoting molecules.
We have demonstrated that renal tubular and interstitial cells undergo pronounced apoptosis during the course of chronic obstructive uropathy (COU). Apoptosis is a complex cellular process consisting of multiple steps, each of which is mediated by families of related molecules. These families may include receptor/ligand molecules such as Fas, Fas ligand, tumor necrosis factor receptor-1 (TNFR-1), and TNF-related apoptosis inducing ligand (TRAIL); signal transduction adapter molecules such as Fas-associated death domain (FADD), TNFR-1 associated death domain (TRADD), receptor-interacting protein (RIP), Fas-associated factor (FAF), and Fas-associated phosphatase (FAP); or effector molecules such as caspases. However, the mechanism of tubular cell apoptosis, as well as the pathogenetic relevance of these apoptosis-related molecules in COU, remains poorly understood. ⋯ The current study documents a dynamic expression of several molecules that are known to mediate the most crucial steps of apoptosis. It implicates these molecules in COU-associated renal cell apoptosis and in the pathogenesis of this condition. It also lays the foundation for interventional studies, including genetic engineering, to evaluate the molecular control of apoptosis associated with COU.
-
Kidney international · Oct 2000
Comparative Study Clinical TrialEffects of lactate-buffered and lactate-free dialysate in CAVHD patients with and without liver dysfunction.
Continuous modalities of renal replacement deplete patients of bicarbonate, which is traditionally replaced indirectly by lactate in dialysate or replacement fluids. We have compared a new lactate-free dialysate (unbuffered dialysate with separate bicarbonate replacement of dialytic bicarbonate loss) with standard lactate-buffered dialysate in terms of acid-base control, lactate accumulation, and hemodynamic stability in patients undergoing continuous renal replacement therapy in an intensive care unit. ⋯ Over the time scale of 24 hours, lactate derived from continuous dialysis circuits is efficiently cleared from the blood of most patients with multi-organ failure, but with less effect on systemic acidosis than is produced by equivalent amounts of bicarbonate.