Kidney international
-
Kidney international · Dec 2012
Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury.
Toll-like receptor 4 (TLR4), a receptor for damage-associated molecular pattern molecules and also the lipopolysaccharide receptor, is required for early endothelial activation leading to maximal inflammation and injury during murine ischemic acute kidney injury. DNA microarray analysis of ischemic kidneys from TLR4-sufficient and -deficient mice showed that pentraxin 3 (PTX3) was upregulated only on the former while transgenic knockout of PTX3 ameliorated acute kidney injury. PTX3 was expressed predominantly on peritubular endothelia of the outer medulla of the kidney in control mice. ⋯ Compared to wild-type mice, PTX3 knockout mice had decreased endothelial expression of cell adhesion molecules at 4 h of reperfusion, possibly contributing to a decreased early maladaptive inflammation in the kidneys of knockout mice. At 24 h of reperfusion, PTX3 knockout increased expression of endothelial adhesion molecules when regulatory and reparative leukocytes enter the kidney. Thus, endothelial PTX3 plays a pivotal role in the pathogenesis of ischemic acute kidney injury.
-
Kidney international · Dec 2012
Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21.
Delayed ischemic preconditioning effectively protects kidneys from ischemia-reperfusion injury but the mechanism underlying renal protection remains poorly understood. Here we examined the in vivo role of microRNA miR-21 in the renal protection conferred by delayed ischemic preconditioning in mice. A 15-min renal ischemic preconditioning significantly increased the expression of miR-21 by 4 h and substantially attenuated ischemia-reperfusion injury induced 4 days later. ⋯ Hypoxia-inducible factor-1α in the kidney was activated after ischemic preconditioning and blockade of its activity with a decoy abolished the upregulation of miR-21 in cultured human renal epithelial cells treated with the inducer cobalt chloride. In the absence of ischemic preconditioning, knockdown of miR-21 alone did not significantly affect ischemia-reperfusion injury in the mouse kidney. Thus, upregulation of miR-21 contributes to the protective effect of delayed ischemic preconditioning against subsequent renal ischemia-reperfusion injury.