Journal of neuroimmunology
-
Opioids have been hypothesized to suppress parameters of immune function by acting within the central nervous system to increase the activity of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Production of catecholamines and adrenocorticoids have been demonstrated to be responsible for many of the observed immunomodulatory effects which occur following opioid administration. ⋯ Here, we will focus primarily on the role of the sympathetic nervous system in modulating opioid induced immunosuppression. The role of the hypothalamic-pituitary adrenal axis is reviewed elsewhere in this issue.
-
This review will discuss studies demonstrating that activation of opioid receptors within the central nervous system alters various immune system parameters. Specifically, natural killer cell cytolytic activity and lymphocyte proliferative responses to mitogen appear to be modulated predominantly, if not exclusively, through central opioid receptors. ⋯ The studies discussed below indicate that acute administration of morphine or related compounds appears to primarily alter peripheral immune function through the sympathetic nervous system, while more prolonged exposure to opioids alter the immune system predominantly by activation of the HPA axis. Finally, the potential clinical relevance of these observations are discussed in relationship to both the therapeutic use, as well as the abuse of opioid compounds.
-
Opioids (exogenous opiates and endogenous opioid peptides) have a diversity of effects on the immune system. Although numerous studies have shown that opioid-induced immunosuppression can be mediated indirectly via the central nervous system (CNS) or through direct interactions with immunocytes, the precise cellular mechanisms underlying the immunomodulatory effects of opioids are largely unknown. In recent years, investigations from several laboratories have indicated that opioids can operate as cytokines, the principal communication signals of the immune system. ⋯ Because the CNS is populated predominantly by astroglia and microglia which have properties of immune cells, it is possible that certain of the CNS effects of opioids involve cytokine-like interactions with glial cells. Although there is mounting evidence supporting the concept that opioids are members of the cytokine family, the relative contribution of the opioids to immunoregulation remains unclear. The importance of opiate addiction in the AIDS epidemic means that gaining a better understanding of the mechanisms of opioid-induced immunomodulation is of more than academic interest.
-
Peripheral nerve injury commonly leads to neuropathic pain states fostered, in part, by neuroimmunologic events. We used two models of neuropathic pain (L5 spinal nerve cryoneurolysis (SPCN) and chronic constriction injury (CCI)) to assess the role of spinal glial activation responses in producing pain behaviors. Scoring of glial responses subjectively encompassed changes in cell morphology, cell density and intensity of immunoreactivity with specific activation markers (OX-42 and anti-glial fibrillary acidic protein (GFAP) for microglia and astrocytes, respectively). ⋯ Perineural application of bupivacaine prior to SPCN prevented spinal microglial responses but not pain behaviors. Spinal astrocytic responses to SPCN were early, robust and not altered by bupivacaine. The current findings support the use of bupivacaine as a tool to suppress microglial activation and challenge the putative role of microglia in initiating or potentiating pain behaviors which result from nerve injury.
-
Tumor necrosis factor alpha (TNF alpha) and lymphotoxin alpha (LT alpha) induce pleiotropic cellular effects through low-affinity 55 kDa type-1 receptors (TNFR1, CD120a) and high-affinity 75 kDa type-2 receptors (TNFR2, CD120b). Both cytokines have potent biological effects on glial cells and are strongly implicated in the pathology of central nervous system (CNS) demyelinating diseases. However, to date, neither constitutive nor cytokine-induced TNFR expression by glial cells have been definitively characterized. ⋯ TNF alpha increases expression of TNFR1 by oligodendrocytes whereas it increases expression of TNFR2 by microglia. Microglia proliferation data suggest that signals transduced through TNFR2 directly or indirectly inhibit signals transduced through TNFR1. Different patterns of TNFR expression by glia at sites of CNS inflammation may be critical in determining whether TNF has activational, proliferative, or cytotoxic effects on these cells.