Antiviral research
-
The appearance of highly pathogenic avian influenza A viruses of the H5N1 subtype being able to infect humans and the 2009 H1N1 pandemic reveals the urgent need for new and efficient countermeasures against these viruses. The long-term efficacy of current antivirals is often limited, because of the emergence of drug-resistant virus mutants. A growing understanding of the virus-host interaction raises the possibility to explore alternative targets involved in the viral replication. ⋯ In in vivo experiments we could demonstrate that VL-01-aerosol-treatment of BALB/c mice with 14.1 mg/kg results in no toxic side effects, reduced progeny virus titers in the lung (1.1 ± 0.3 log10 pfu) and enhanced survival of mice after infection with a 5-fold MLD50 of the human influenza A virus strain A/Puerto Rico/8/34 (H1N1) up to 50%. Furthermore, treatment of mice with VL-01 reduced the cytokine release of IL-α/β, IL-6, MIP-1β, RANTES and TNF-α induced by LPS or highly pathogen avian H5N1 influenza A virus. The present data demonstrates an antiviral effect of VL-01 in vitro and in vivo and the ability to reduce influenza virus induced cytokines and chemokines.